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PARTEEIA
Unit - 11

If anexpression F(x)} at x=a assumes forms like 0/0 , e/cc , 0 X 00 , 0—co ,

0° , =", 1™ which do not represent any valué are called indeterminate forms. The
concept of limit gives a meaningful value for the function F(x) at x=a overcoming
these indeterminate forms.

The reader is familiar with the evaluation of limit mostly in the cases of 0/0 or co/ec
without the involvement of differentiation. Few more indeterminate forms: «—oo ,

o x 0, o, 0% ;1 can be reduced to the two basic indeterminate forms 0/0 and
oo/ca. Then lm‘ut is found passing through a process of differentiation warranted by a
very simple rule called L* Hospital’s {(French Mathematician) rule which is established
by using Cauchy’s mean value theorem.

Statement: If f(x) and g(x) are two functons such that

(i) lim f{x)=0 and lim g(x)=0 fe, f(a)=0=g(a)

x>0 x—a
(ii) f(x) and g'(x) existand g’ (a)#0, then
lim [Ax) lim Lill
rosa 8(X) L, 87 (x)
Note : Extension of the theorem
If f'(ay =0 and g'(a) = 0 then we have -

im £4X) o gim LX)

p” and so on.
X-—n §(x) x=a g7(x)
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Working procedure for problems by applying L” Hospital's rule

@ The rule is applicable for the form 0/0. It can also be applied for the form co/ce
as we can write

() i /g (x)
e T T
where f(x) = X o and g(x) >3t~ as x—a

2 However while applying the rule in this case also, we follow the usual procedure
of differentiating the numerator f(x) and the denominator g (x) separately.
If the indeterminate form persists after applying the rule once, we can apply the
rule repeatedly till we arrive at a definite value. It is highly advisible to look for
simplification at each stage. Problems have been bifurcated into four types and
the procedure too has been explained separately in each type.

@ The following four standard limits and well known simple properties connected
with limits can be readily used.

M lim T =1 G) hm =1 ) lim anx _ 1 Gv) lim =1
x—=0 x>0 x—( x—0
Type-i

The rule can be applied directly in the case of forms 0/0 and /e . In the cases of
w—oe and e X 0, we have to employ simple methods (taking L.C.M, using equivalent
trigonometric expressions etc.) to simplify the given expression in bringing it to the form
0/0 or o/« so that the L' Hospital's rule can be employed.

WORKED PROBLEMS

Evaluate the following fimits

y xe' - dog{l+2) i _l-cosxy
L lm{] T = L hp Alog(l+x)
E )
) log (sinx) PR
3. lim 05 LT -, & hm
¥ 2 (M72-x) - 3
B sinhx-x _ _ Vgt
5  hm —— - e 6. lim ———
4y SINY—XCOsX I
. legix - ) 8. lim log,  sm2v
7. lim tan ;"_ 1 ol
L I
log x 10, lun Iugt . tan ax
i T AT x
5. lm COSCC X v D

— 0
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1 Let k = lim X0 = 1og(1+x) (9)
x-0 -\'2 Y

Applying I Hospitals rule,
o xf+e-1/1+x (0
k = lim

x>0 & 0
o lim XCEEE V(1 4x)P 0414141 3
oo 2 = 2 =2
Thus __k= 3/2
2. Let k = lim ——98% [QJ
0 Xlog(1+x) 0
Applying L’ Hospital's rule,
- lim sinx 0
_xl_mx-(lx’1+x)+log(1+x) 0
= lim COS5 X _ 1 _1
x50 X —1/(1+x) + 1/1+x +1/1+4x 0+1+1 2
Thus k= 1/2
. log(sinx) 0
3. Let k = lim —5————2 1
ron2 (W2-x)
' oS x/sin x
Applying L" Hospital’s rule, k = lim ——~to—2
PPyIng P xan/Z_z(n/z‘-x)
ie = lim __cotx -0-]
e TEZ B I U
Now k = lim __C_Qﬁi il
XY= n/2 2 2
Thus k=-~1/2
X _px
& Let k = lim 2282 [g}
x—0 X
Applying L*Hospital's rule, .
X ’
k = lim nXIOgﬂ] b log b = loga—logb =log (a/b)

x—=i

Thus Kk =log(ab)
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5. Let k = lim —onkx-x [0
: yop SINX - xcosx

Applying L’ Hospital’s rule,

i coshx~1 . coshx-1 0
k = lim - = lim ———— =
xop0 COSX+xsinx —cosx , ., XSinx 0
k = lim sinkt x 0
X0 XCOSX+sinx 0
- lim cos hx _1
x—0 —Xsinx+cosx+cosx T2
Thus k= 1/2

{Note : We have applied the rile thrice in this example)

x_ X
6. Let k = lim ——% ...[9]

a a
x—a X =1

Applying L" Hospital’s rule,

X _ X
k= lim % (1+logxl) a’ loga (Q]
x4 ax®" ' -~0 0
P a® (1+loga) - aloga a” _ 1
- g-a"1 ”aa_

7 Let % = fim 10B(X-W2) [::]

£ o2 tan x
Applying L’ Hospital’s rule,
_ 2
k= lim 1/(x n/Z):lim cosx [QJ
xom2 56Xy ymp (X - W/2) 0

k = lim —2cosxsinx -0

Y —=3n/2 1
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8. Let k = lim log,  sin2x
x—=0

(We have the property log,a = loga /loghb for any base)
Now k= lim 10E(IN2X) {-_“J

x—o log(sinx)
Applying L’ Hospital’s rule,

-3

. 2cos 2x/sin 2x . 2cot2x ) 2tan x 0
k =lim ——————— = lim = lim R
r—0 COSX/sinx o COtx X0 tan2 x 0
k = lim isf% =1
x—0 2sec” 2x
Thus k=1
9 Let k = lim —~2B% [-"—°—°J
v p COSecx oo
Applying L’ Hospital’s rule,
k= lim ——2 = gim S0y
10 - cosecxcotx ¥ 50
= ~lim 22X lim tanx = ~1-0 = 0
x—0 x x—={
Thus k=10

Remark : sinxtanx/x is of the form 0/0 and the rule could have been applied again to
obtain the answer. But it is always advisible to look for simplification and use standard
timits at the right juncture.

10. Let & = lim log'am py tANAX = lim log (tanax ) (Z:J

=0 rop log(tanbx) | —ee
Applying L’ Hospital’s rule,
k _ asec’ax/tan ax . asec’ ax tan bx

= lim > = lim 7
r-0 bsec"bx/tanbx o bsec” bxtanax

) a .. 1 cosax sin bx
ie., =3 lim TR . by cos? by
. y_>p COS“ax SInax cosox -

a I sin bx cos x _a A sin 2bx 0
p ™M Gnaxcosaxr b ™ GinZax 0

x—0 x-—30
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kﬂﬁ i 2hc052b_r__
b ,lm 2Zacos2ax
r—=0
Thus k=1

Note : Alternative simplification after the first step

. a sec? ax . tan bx
k=Hm ——-lim =
v 0 bsec by ,_p tanax

lim

) tan ax
r—0

a tan bx 0 :
5 [5] since sec( =1
Now, applying the rule again we get

a . b sec? bx
k = 3 lim —— = 1
=} Asec ax

Thus k=1
Eovelrnte Hiue fodleenng 'I"';;'r"_
L0 . o 1 -
11. liny . . 12. lityy [ .
R L T R
. i ol i i .
13, lim | ~—cntfvar) 14, lim 1 - i"’-b--( lf Yo
Al . [ -
voeall ! ; I A
15, lim [ 2y tana-m e ! Lo, Tim tanv g
veem 3 1 T
17, hm ovtan e 18, I i x vtand o O
' \ . !
19, dimoa by 20 Hmieg [2-(x a)leatt - oo
1 - sl T — el
. x 1
11. Let k = lim - <o (o0 — eo)
- r—=1 r-1 logx

We need to simplify the given expression.

. . xlogx—(x-1)| (0
e _hml: (x—-1)logx ] [0)

x—1
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Applying L Hospital‘s rule,
k = lim x-1/x+logx—-1 - lim xlog x (9
(x~1)-1x+logx | (x~1)+xlogx 0
‘ 1+logx 1+0

k=1
1m11+(1+logx) 240

Ni'—-‘ J,

Thus k= 1/2
1 1
12 k:. — ca
xh_r:‘z[x—2 log (x 1)] )

=2 L (x-2)log(x-1)
Applying L” Hospital’s rule,

ie., = lim _log(l‘—l)—(x—2):r” [%J

‘ 1/x-1)-1
-1 ( | we
xl_l;nz | (x—2x-1 )+jlog(x 1) shall simplify.
e, = lim 2-x
x=2 | (x=2)+(x-1)log(x-1)
-1 -1
k: i = —
3'212[1+1+10g(1—1)] 2

13. Let k = lim [E - cot(x/a)].. (e0—o)
ie., = lim [

= lim [asin(xfa)—xcos(xx’a)].” (%]

x50 xsin{x/a)

a4 cos(x/a)
X sin{x/a)

Applying L’ Hospital’s rule,

[a-l/wcos(x/a)+x-l/a-sin(x/a)—cos(x/a)}

k =.lim -
x-1/a-cos(x/a)+sin(x/a) -

x—{

. ' . xsin{x/a) 0
ie., = hm - T
xcos{x/adY+asin{x/a) 0

x—0
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k = lim x-1/acos(x/a)+sin{x/a)
T yoo| X —V/a-sin(x/a)+cos(x/a)+cos(x/a)
. _0s0 _0_,
e O0+1+1 2
Thus k=0

14. Let k = lim [% - 1—05%} [oo—.

4
0
ie. lim Folog(1+x) [%J

x—=0

x— G xZ
Applying L'Hospital's rule,

k = lim l:_g_l_il_.__ﬂf_) (%J

x—=0 2x
2
p o M(rx? 1
2 2
. =0
Thus k= 1/2

15. Let k = litn (2xtanx — wsecx)...{ee—o0)

r—R2
, . sin x 1
ie., = lim {Zx x—rr- x]
Yo T2 cOs cOoSs
. . 2xsinx~w 0
ie., = lim “osx 1" 10
x—n/2

Applying L’ Hospital's rule,

2 . H
k = lim ‘.xcos:x‘+251nx -2
x — /2 st
Thus k=-2
16. Let k =lim tanx-logx ... (0x—%) i
} x—0 . !
i, = lim _125_1’_ —EJ
x—0 cot x i

Now applying L’ Hospital's rule,
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. .2
. 1/x ) sin‘ x
k=lim ——— - _|im
x—={ —cosec x x—0
. . sin x . .
ie., = -1lim -lim sinx =~1.0 =0
r-3{ x=0
Thus k=

17. Let k = lim xtan(1/x)... (e x 0)

R

, :
e, %}TXJ Put I/x =y ; y>0as x>

X o

t
Hence k = lim 2ny _ 1
y—0

Thus k=1

18. Let k = lim (1-x*)tan(mx/2)... (0xeo)
x—=1

ie | = lim A=) ) 9

N roy1 COL(MX/2) (0

Applying L’ Hospital’s rule,

—2x _ 4
k = lim -~
x-s1 — N/2 cosec? (nx/2) n
Thus k=4/m
19. Let k=lim xlogx ...(0 x —0)
=0
: log x — oo
ir., = lim —BL e
x—={ (l/t) [ e J
Now applying L’ Hospital's rule,
k = hm —"1/—~-llm -x=0
10 —1/% x—0 )
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20. Let kK =lim log{2-(x/a)]cot{x—-a)... (Oxeo)

x—da
ie. - ligm legl2-(x7a)} (0
e tan(x-a) 0

Now applying L’ Hospital's rule,

k = lim ! i ! = —
x—g 27 (x7a) 4 59‘:2(1'—“)

=l

Lype-2

The given expression or its simplified form will be in the 0/0 form when

x =0 or as x -0 but will involve terms of the form ¥ sin X, X sinc x, x'tan® x

etc. In the event of applying the rule, the differentiation becomes tedious
and we should not venture to do s0. We can conveniently modify such terms so as to
involve (sinx/x )k or {tanx/x )k or (x/sinx )"‘E or (x/tanx )k which can be
separated out from the given expression. These terms become 1 as x — 0 with the
result we will be left with a simple expression (product gets eliminated) in the 0/0 form
for the application of L’ Hespital’s rule. Simplification at each step has to be explored.

[eadiate the G0y Himets
- bt do-- . RIS, TR .
21 fim e 22, lim Sl
[T A1 AThY PR TsinT A
: I TUM TP B SR . Py = eas v rtoe T =0
23. Lim LT, e 21 lim R £ :
-’ Lo 10 Lo P vianT
P o L 1]
23. iy ¢, ccul o AR fiy: - .
T _ AR
. tan x —x 0
21, Let k = lim "0
x—=0 ;(2 tan x
. _ tan x — x . tanx-x . { «x .
ie., = lim T tana = lim ——3—“—-111’1'\ Lt o ki
x=0 32, anl.x x—Q X x—0 \ A0
' . tan x —x 0
Hence k = lim —5——-1... [6)
r—0 13

Applying L’ Hospital's rule,
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seczx—-l tanzx
k=1l = lHm
x>0 312 x 0 312
ie --1~11m [tanx)__l_l_l
! 33{_)0 x 3 3
Thus k=1/3

Y 0

x50 rsin” x

2. Let k< lim iwi__—g[gJ

ie., = lim - = lim 2
sin” x X
x—0 x-  y3 x>0

P
Hence k = lim M:—z-l... [%]

3
P +2cosx—2 x2+2cosx——2'h.m[ x J
x-0

-0 x4

Applying L’ Hospital’s rule,
0
0

x=0 ‘ha

. 2-2cosx
= lim ————=~ |
o0 124

=i 2sinx__1_l_ sinxy 1
SM Ty T

x—0 x—=0

Thus k=1/12

23, Let k = lim €—¢*-2log(1+x) 0
) Xs0 x sin x 1o

X

- —2log(l+x)

ie., = lim ;
x50 x_smx_x
— _x—
- lim & —¢ 210g(1+x)—lim~.x—
10 2 v SiNX
- -x_ .
- lim - Z;Og(1+x)'1“l g
x>0 X 0
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Applying L’ Hospital’s rule,
Ere - (2/1+x) (0]

k = lim
x50

=1

2x

- *+2/(14x)?

k = lim 3 1
x—=0
Thus k=1
24 Let k = km 1+smx-—cosx;log(l-x)m 0
=0 xtan™ x 0

. 2
ie, - lim 1+smx-—cosx+log(1—-x)'lim[ x J
x—0 13 =0 tan x
- lim 1+smx-cosx+1og(1—x)_1m [QJ
x—0 x3 0
Applying L’ Hospitals rule,
¥ = lim cosx+sinx — 1/1—x [g}
x—=0 31'2 0
_lim—-sinx+cosx—1/(1-x)2 [g}
x-0 6x 0
= lim —cosx—sinx-2/(1-x) _=3_-1
_x—)O 6 S 6 2

Thus k=-1/2

25. Let k = im [ 1 —cotzx]... {eo—o=)

x—=0 12
2 p—
ie., = lim l——lz = lim fan” x—x° x212
- x_)o .12 tal"l X 1_)0 Iztan X
. tanlx-* ( x )2
=hm —_--hm
x—0 x x>0 tan x
. tan? x — X% 0
= lim —4-1 6
x>0 X
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Applying L’ Hospital’s rule,
2 tan x sec® x ~ 2x

k = lim

5

x—0 41'3
li 2tanx-2sec2xtanx+2sec4x-2
= lim
x>0 12’52
, . Zseczxtanzx+sec4x-1
ie., =2lim .
x>0 1212

Now, (sectx—1)=(se?x-1) (sec?x+1)

ie., (sec‘ x-1)= tan’ x( sec?

x+1) = sec

2

7

(Further differentiation will be tedious and hence we simplify the term

xtan2x+tan

25ec2xtanzx+sec2xtan2x+tan2x

Hence k =lim
x—0

612

tan’x (3sec? x +1)
m

x>0 61'2

x—0

1 1

2. Let k = lim [—_—]...

x-=30 1'2 Sil12x

fe = lim sin’x 22 (g]
‘ x—=0 xz-sinzx Lo

= lim — lim
x—=0 x x—0

sinfx—x* (

= lim
X 0 x4
Applying L' Hospital's rule,
- ] 2sinxcos x —2x
k = lim —
x— 0 4x

(0=o0)

2
X
si.nx]

sinfx—d [%J

= lim

x—=0 -

sin2x-2x

2 (

_ 2
-1 im (“‘“]‘ lim (3sedx+1)
x—0 X

2

oo
S

sec"x-l)

X

91
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-1 2cos 2x —2 or 1 cos2x—1
x—{ 12152 x50 612
—2 sin? - i - -
=%li 25mx=?1h.m[smx] =T1‘1=T1
x—=0 ’-2 x>0 x

Indeterssenars oo 18
It is evident that the function involved will be of the form [f(x) F{*) and we have
to find the limitas x —a.

S Let  k=lim [f(x)E™)

xX—a

Taking logarithms on both sides we have,
log k = lim g{x)-log[f(x)]

xX—a

We can evaluate the limit on the R.H.S as already discussed and let us suppose that the
limit is equal to L.

ie., log,k =1 =k = ¢! whichis the required limit.
Remark : One of the common question is that why 17 is indeterminate ?

Let k=1lim [f(x)B*).. .1~

r—=a
= log, k = lim g(x)logf(x)...e xlogl = e x 0
X =3
which is indeterminate. On the otherhand if k = lim [f(x)]g(x) is of the form
X—da

¢ where ¢ # 1 we have

log, k = lim g(x)logf(x) =e xlogc = e

x—=a

Eraluate the follrcinge Danks

. R IR I o . o
27. - Hm 28 lim (cosx )i
A o+t )
29.  lim (siny N : o v

s 3. hm f2-"



INDETERMINATE FORMS ' a3

27. Let k = lim x1-% . (17)

x=1
im —L i 108X {0]
= log k = lim —— logx = lim S
e xo1 1-% xo1 17X 0
Applying L' Hospital’s rule,
log, k = lim H=--1
: x—1 ~1
ie., log k = -1
Thus k=¢1 =1/
2
28. Let k = im (cosx)’* ... (1)
=0
= log, k = lim IM—‘%}(Q]
x=0 X 0
Applying L’ Hospital’s rule,
—-sinx/cosx - tanx -1
log 'k = lim ——————— = — lim = 5 -1
‘ x—0 2 2 x-0 X 2-
ie, log,k =-1/2=5k = ¢ V2 = 142

Thus k= 1/Ve
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29. Let k = lim (sinx)®"* .. (17)
x—n/2

= log, k = lim tanxlog(sinx)... (e x 0)
t—nd

Uog!sinx}m [g)

il = lim cotx. 0

x—=n2
Applying L’ Hospital's rule,
cos x/sin x

log k= lim —————= lim -sinxcosx =0
B x—n/2 "Coseczx x - n/2

ie., log, k = 0
Thus k=é& =1

30. Let k = lim [2—(x/a)]"“(“”'2“) (1)

XxX—a

= log, k = lim tan(nx/?a)-log[z-—(x/a)]... (= x 0)

xX—da

ie., = lm
x—

1og[2-(x/a)'|m(g)

cot (nx/2a) 0
Applying L’ Hospital's rule,

1
[2—(x/a)]
log k = lim 2 =

rq —COsSeC* (N x/2a) x w24

-1
X —
a

ain

ie., log . k=2/n

Thus k= "

1/x
31, Let k = lim [“I;bx] (17
- x—0

=>. logtk=1im log{(a":b")/z}m [%]

xr—0

Applying L’ Hospital’s rule,
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2_ 1
&+ b 2

(" loga+b*logh)

log, k = lim

x>0 1

= %(loga+logb) = %log(nb) = log Vab
ie., log k = log Vab~
Thus k= vab
2 .
32, Let k = lim [sin? (n/2=3) P (VZ-%) (1)
x>0
Put  y = n/Z—x for convenience. As x— 0, y’-—_an/?

2
Hence k = lim (sin®y)* ¥ . (1)

]
= log, k = lim seczy-log(sinzy)...(mXO)
y—on/2
C,
o8 () .
y—on/2 COS° Y
Applying L’ Hospital’s rule,

. , 2 ’
logek = lim 2 siny cos y/sin” y =_1

yonz <~ 2cosysiny
ie., log, k = -1

Thus k=¢1=1/e

33. Let k = lim (1-x2)1/108(1-0) (g0
x—1 )
—_— 2 —_—
= log, k = lim MJ—[-—]
y—1 log(l-x)
Applying L’ Hospital’s rule,
log,k = lim 2= . 2(l-x)

= lim
-1/1-x roq (1=x)(1+x)

—_—

x—=1
ie., Iogek=lim —2-'!-—21
r o1 1+x

Thus k=e' =¢
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X
34. Let k = lim [1+%] (1)

xX— oo

= logek=lim xlog[1+%}...(mx0)

X3 o

a
log[l +;J

= iim —(]};")—[

X

[=] {om]
e

Applying L’ Hospital’s rule,
' a a
1 / [ 1 +;J v = ?

log k = i
B e (-1/2)

ie., log k = a
Thus k= ¢*

X
35. Let k = lim ("“1)

£ ee LB

We need to effect a basic simplification in this case of x —» o

. o far(m)Y -
ie., k-xh_r’nw[—-*——a_(l/x)] L (1)

Put 1/x = y for convenience, sothat y =0 as x—>eo

1/y
ie.  k =lim [%-"-} (1)

y—0 a-y
. 1 aty
= log k=1lim —- lo
% y—)Uy g(a_y]
_ Lim log(ﬂ+y)—log(a—y)“_(g]
¥ 0
y—=0

Applying L’ Hospital’s rule,
log, k = lim 1/(a+y) 41- 1/(a-y) _1a ; 1/a
y—0 X

2
a

ie., logek = 2/a
Thus k= /%"
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2
. 1/x
36. Let k = lim (5“;"] (1)

x>0
- log, k = lim Mﬂ[g]
x50 12 )
Applying L' Hospital’s rule,
1 .xcosx—sinx
log k < | (sinx/x) ¥
0 = lim
ge x-30 2x
x Yeosx—siny
log k = lim ——  lim
Oge x—0 Sm"x-m sz
. xXcosx-sinx 0
= 1.lim T [6)
x—0
_ —xsinx+cosx—-cosx
x>0 61'2
- lim -1.Snx_ -1 -1
e e Tx T8 YT

t xlz’x
37. Let k = lim [‘T J (1)

x—0

= log,k = lim log (tanx/x) (%]
x>0 X s
Applying 1" Hospital’s rule,
1 X sec x —tan x
(tan x/x) X

1

log, k = lim
x—=0

xseczx—tanx

i = lim ——-1i
e., = 1m t um xz

x—0 anx x—0

x sec® x — tan x (0)
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‘x-25ec2xtanx+seczx—seczx
2x

log k = lim
= lim sec’x tanx = 0

x—=0

ie., log,k =0

38. Let k = lim 25"%. . (0%)

x—=0
= log, k = lim sinxlogx... (0 X —e)
x—0
= lim Jogx -z
xg C0secx | oo
Applying L’ Hospital’s rule,
log, k = lim -1-’2-——=-lim "2 lim tanx
x—0 —Cosecxcotx x50 x50

ie., logek=~—l-0=0

Thus k=€ =1

1 2sinx
39. Let k = lim [;J e ()

x>0

= log k = lim 2sinx-log(1/x) = —lim 2sinx-logx
x—=0 x—0

= —2lim sinxlogx = O (same as the previous example)
x—0

40. Let k = lim (cotx)®* . () -

x>0

= log, k = lim tanx-log(cotx}... (Oxoe)
x=0
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- lim loggcotxl.“ (EJ

cotx

x—»0
Applying L” Hospital’s rule,

. — cosec x/ cot x ,
log, k = lim > = lim tanx = 0
x—0 —cosec x =0

ie., Iogek =0

Thus k=6 =1

X ==
e, k =lim (cot 'x)* = lim [tan™? (1/x) *
X—eca X =yoa

Put /x =y. As x>, y—0

Hence k = lim (tan ly)¥ . . (0%)
y—=0

= log,k = lim ylog(tan 'y)... (0 x ~w)

y—0
-1 — oo
ie., = lim Mﬂ(-—-—}
y—0 (1/y) =

Applying L’ Hospital’s rule,

Vian ly. 171+

log k= lim
¢ y-0 _1/1/2
2
= lim 3 ¥ {g)
y—0 tan Ly (1+y2)
logek=lim iz 0

y—0 tan‘ly-2y+l S 0+1

e, log k =0 _ e
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Miscellaneous Examples

o . . wens Bt —breosn
42, Find the palue of the constants o amd B uwcl Bt Hin Ml D
’ £
. X

vy be vgual fo ity
>> Let k = lim acoshx—bcosx _ aab
x—=0 12
Wemusthave a-b=0 inorder to apply the L’ Hospital’s rule,
asinhx+bsinx (OJ

Hence k = lim

2x ]
x—-0
. acoshx+bcosx a+b
k = lim =
2 2
x—0

But wemust have k=1
(a+b)Y2=1 or a+b=2

By solving the equations,a—b = 0 anda+b=2 wegeta=1,b=1
Thus a=15b=1

) =
. . de —hoosy+ oy
43. Find the constants a, b, ¢ such that lim t ----{-(-f‘_"} vree may b equal to 2.
R Ysiny -
x - X
., ae " —bcosx+ce
>> Let k = lim -
xsinx
x—=0
x -X
, - +
ie. - lim ae bco:x ce i .x
x—0 X x—=0 Sin x
. ae*-beosx+ce ¥ a-b+c
= lim -1 = 0
x—0 : xz
Therefore we must have,
a~b+c=0 )
With (1) we have 0/0 form. Applying L’ Hospital’s rule,
* b e - —x
., ae +bhsinx-ce G~C
k = lim = -
2x 0
x>0

Againwe musthave 4-c=0 toget 0/0 form. Thatis
a8 =c .. (2)



INDETEAMINATE FORMS 101

Applying the rule again we have,

ge+bcosx+ce ® a+bh+e

k = lim = and k = 2 by data.
2 2
x—{
ie., (a+b+c)/2 =2 and therefore
at+b+c=4 : .. (3)

Since ¢ = a (1) and (3) becomes 22-b= and 22+b=4
By solvingweget @ =1 and & =2 . Hence ¢ = 1
Thus a=1 b=2, ¢=1

W Fied e vl oF By o oo e o _ £ frdte What is the
Lot

ke it ?

>> Let k= lim

i x—0 XS
Applying L’ Hospital’s rule,
. 2cos2x+acosx 2+4a
k = lim =

x—0 312 0 _
Wemusthave 2+a4=0 or a=-2 forthe 0/0 form.
k = lim -4sin2x —gsinx (QJ
T bx 0

sin2x +asin x [UJ
SR

x—>{

k = lim ~8cos2xr-acosx _—(8+4) = —1since 2 = -2

x—0 6 6
Thus a= -2 and finite limit= ~1

45 Fraluake Im l l——J-r—'\:j_ ‘

=il ' )
. 1/x _
>> Let k= lim (dix) " -e (EJ

x 0

x - {
Wenote that lim (1+x)"* = ¢ and hence we have 0/0 form.

x-30
Applying L”Hospital's rule, -

d
(107 " |
k = lim =lim - ()

x—{ x—0

1 dx
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where u = (l+x)1/x and letus find %

log(1+x)

1
Now logg—zlog(lﬂr): .

Differentiating w.r.t. x we get,

du J.E.1+:!c

u .{x-(1+x)log(1+x)}

—log(1+x)

"=

[~ ER

x ~ " (1+x)2

Now Hm du = lim u - lim
dx

x—>0 xr—0 x-0

x~=(l+x) log(l+x)
2+ '

But lim u = e. By using (1} we have

x—»p

k< e lim {x-—(l+x2)10§(1+x)} {_g]

x—0 X +Xx

Hence k = e¢lim {1—1—Iog(1+x)} [%}

—1/(1+x)_=

= elim — =

e 1l _z¢
x—=0 2 2

EXERCISES
Evaluate the following limits.

) - 2,
1 Lm ;cosx log(1+x) > Lm &€ x-2tanx
x—0 x2 x—n/d 1+cos 4x
_ . T i -1
3. Tim ¥ log{1+x) 4 lim ST* szm x
=0 1-cosx x—0 x
— 2
Vr~1+Vx-1 6. lim log (1+kx")

=1 \I; -1 x>0 1-cosx
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7. lim log (1-x) 8. 11.mxcicas(l/x)
r—1 Cotmx s o 1+x
9. lim log_tan x 10. hm log (cosx)
¥—0 ronp fAnx
. 1 1 .
11 bm | == —— 12, lim (secx - tan x)
x=0 [ X €1 xX—n/2
i 1 x ' - '
13, Hm i “Too s 14. lim xlog tan x
x511 0gx logx 20
15. lim (tan x)tn2 26. lim (2-x)tan(nx/2)
x-on/d x-31
1/x 1/%°
X, px
17. lim (ﬁ +b +C’rJ 18. lim (tanxJ
3 x
x—0 x—0Q

19,

20.

13,

17.

Find the constants 4 and b such that lim *.(1*+4¢0sx)-bsinx may be equal

x>0 x3

to unity .

o X(l-acosx)+bsinx 1 )
If lim > = 3 - show that the constants a and b satisfy the

x—=0 X
identity a+5=0,

ANSWERS

1/2 2. 172 3.1 4. 1
V2 6. 2k 7. 0 8 1
1 10, O 11. 12 12, 0
-1 4. 0 15 1/e 16. &

(ab)l/3 18, (73 9. a=-572 b=-37
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Introduction

We are conversant in representing the position of a point F(x, ¥} in the cartesian
system and accordingly (x, y) are called cartesian coordinates.

In this topic we discuss another important system to represent a pointinaplane known
as the polar system.

p— ) _
j E‘Zﬂ Polar Coordinaes

Initial reference is chosen by spottingapoint O in

the plane called as the pole. / e
A line OL drawn through O is called the initial :

line. If P is any given point in the plane, join the /

points O and P with the result an angle is vl

formed at O. e

The length of OP denoted by r is called the /‘\/
radius vector of the point P and the angle LOP . 'L
denoted by 8 measured in the anticlockwise
direction is called the vectorial angle.

[ !

The pair v+ and © represented by P = (r, 0} or P(r, 8) are called as the polar
coordinates of the point P. _

It is evident that r is positive and © lies between 0 and 2= according as the
position of the point P in the four quadrants.

We now proceed to establish the relationship between the cartesian coordinates (x, y)
and the polar coordinates (r, 8).

f W

Let (x, y) and (7, ©) respectively represent ’
the cartesian and polar coordinates of any point
P in the plane where the origin O is taken as the gy

pole and the x-axis is taken as the initial line. / P
From the figure we have OQ = x, PQ = . /
Also from the right angled triangle OQP we have //,ﬁ i
.___:.n_ N r ; ————e P.
_9Q _x L : i
cosB—OP—r s x=rcosb c A
sino =28 L . y=rsing .3

TOP ot
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Further squaring and adding (1) and (2) we get
x2+y2 = rz(c0528+sin29) =7 . 1= P

= NTE .. 0)

Also dividing (2) by (1) we get

'8 Y tane = ¥
rcoso X X
—tan—- 1 [ ¥ )
0 = tan [JfJ ()]

The relations (1) and (2) determine the cartesian coordinates in terms of polar
coordinates whereas relations {3) and (4) determine the polar coordinates in terms of
cartesian coordinates,

Itis evident that 7 is a function of O (r dependson 6)and the equation in the form

r=f(8) or f(r,0)=¢ ¢ being a constant
is called the equation of the curve in the polar form or simply a polar curve.

We now proceed to establish some results related to polar curves.

S _ . -
CA23E Angle between tadiv v dor wad Lty eng

Let P(r, @) be any point on the curve » = f(0).
XOP =0 and OP =

between the radius vector OP and the tangent
PL . Thatis OPL = )

i . ! AN
, : _ e -
) e '_';._i. [ 'I‘\-._ .
From the figure we have ' T i Y

Y=0¢+0

f
Let PL be the tangent to the curve at P ; ,__‘;'P /
subtendinganangle with the positive direction ; /f,:‘ Fov
of the initial line (x—axis) and ¢ be the angle % - C \\J" ir 1

P

?

(Recall from geometry that an exterior angle is equal to the sum of the interior opposite angles)

= tany = tan(¢+9)
tan ¢ + tan 8 .
£ = -
Y = an otan® @

Let (%, y) be the cartesian coordinates of P so that we have,

X=rcosB, y = rsind
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Since r isafunctionof 6, we canas wellregard these as parametric equations in terms
of 6.

We also know from the geometrical meaning of the derivative that

dy .
tany = E'E = slope of the tangent PL

- _ Ay pdx ions of 6
ie., tan ® o / 20 since x and y are functions of ©.

d

—(rsin®
de(]’sm ) _ reos@+r'sinb here # _ dr
T —rsin®+r cosB e

ie., tany = —
o (rcos9) |
(We try to correlate this expression with the already existing expression for tany in {1).
Observe that the positive term in the denominator of (1) is equal to 1)

Dividing both the numerator and denominator by r'cos§ we have,

rcosB® rsing
! + )
rcos8@ rcost

t. =
any —rsin® r cos®
+ +
¥cos® +vcosB
-r—,+tan8
r
fe., tany = " S A2)
1-— - tan B
,‘/

Comparing equations (1) and (2) we get

o e o[ 40
*(EIL] or an¢ =vr o

L 49

fan ¢ =

x|~

Equivalently we can write it in the form
1o _1far or cot¢ = e
tang v | d0 R?=7 1 a0
de

Note : A question format :- Prove with usual notations tan ¢ = v —
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L

-

I Tt ot ing twino 0 D e Loy e o bhe angent

Let O be the poleand OL be the injtial line. Let P (7, 8) be any point on the curve
and hencewehave OP =r and LOP = 6.

Draw ON = p (say) perpendicular from the pole y/ 3%
onthe tangentat P and let ¢ be the angle made by LT
the radius vector with the tangent. - « / L

From the figure ON P = 90° and LOP = 0 IR
Now from the right angled triangle ONP "
| ON
sin ¢ = —

OpP

ie., si.n¢=; or | p=rsind

(This expression is the basic expression for the length of the perpendicular p. We proceed to
present the expression for p in terms of © in two standard forms)

We have p = rsin ¢ ‘ -..(1)
1 dr
and c°t¢=rd9 . (2)
Squaring equation (1) and taking the reciprocal we get,
=11 ie., l—~—ccrsec2'1>
oA sinfe P2 A2
- 1 1
or - = — 1+c0t2¢
7 rz( )
Now using {2) we get,
2
272 A e
2
1 1 1 (dr
or pz——;-br‘[&J - (3)

Further, let % =1

Differentiating w.r.t. 8 we get,

(A _dw 1 (dr Y (a
Aldo) de ~ JAlde) T|de) °Ysquarng.
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Thus (3) now becomes

2
;12~=u2+[%g] . {4)

Note : The usual format of the question is as follows.

. . . 1 1 1 ( dr
] ‘ Prove with usual notations ;5 = :2- + 3 (EE]

(i} Prove that for the curve r = f(8),

1o fduY 1
pz-—u dB wereu-r

WORKED PROBINMS

Angle of intersection of two polar curves

Basically we know that the angle of intersection of any two curves is equal to the angle
between the tangents drawn at the point of intersection of the two curves.
Let r'=f (8) and r =£,(8) Dbe two curves

intersecting at the point P.
Let PT, and PT, be the tangents drawn to the
curves at the point P.

It can be seen from the figure that ¢, is the angle

between the radius vector OP and the tangent
PT, and ¢, istheangle madeby theradiusvector /

) L
OP with PT,. It can be clearly seen that the angle

¥

between the two tangents is equal to ¢, — ¢,
the acute angle of the intersection of the curves is equal to | ¢, — ¢, |

If |¢,~9¢, | =2 thenwesay that the two curves intersect orthogonally.

Furtherif ¢2 -0, = g then ¢,2 = _72E+¢1

1
tan 01 i

tan ¢, = tan[—g- - J = —cotQ, = -

or tané, - tand, = —

Tkis rasult serves as arn: alternative condition for the orthogonality of two polar
crrves.
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Working procedure for prablems

Given the equation in the form 7 = F{8) we prefer to take logarithms first on

both sides of the equation and then differentiate w.rt 8 which always gives the

d
term % Eg being the derivative of logr wrt 6

9  We directly substitute cot ¢ or cot¢,, cot ¢, as the case may be for the term
1dr
T de

<  Wesimplify RH.S too and try to put it in terms of cotangent ie., ““cot” so that we
obtain ¢ or ¢, and ¢, as the case may be.

1é,-¢,) or | ¢, =%, | will give the angle of intersection.

= If this contains 8 then we have to find 6 by solving the pair of equations to
obtain the angle of intersection independent of 0.

> Suppose we are not able to obtain ®, and o, expl'icitly then we have to write the
expressions for tan ¢ i tan ¢, and use the formula

tan ¢1 —tan ¢2

tan (0, - ¢,) = L+tan ¢, tan ¢,

@ If tan( b, —¢,) = o (say) then the angle of intersection is equal to tan” (o)
2 Alsoif tan ¢, - tang, = ~1 then,
tan(0,=9,) = = ¢ -0, = w2

Note : The following allied and compound angles trigonometric formulae will have frequent
reference in problems.

1. sin (n/2-6) = cos O o5 (n/2-0) = sinB
tan(n/2-8) = cot B cot(R/2-8) = tan ®
2, sin (M/24+0) = cos 0 cos (n/2+9) = ~sm 6

tan{n/2+08) = ~cote cot(n/2+6) = —tan®

l1+tan® 1-tan 9
3. t /4 + =T t{n/44+8) = ———
an {m ©) l1-tan®g cot(n ) 1+tané@
Also we use the results -
1+cos0 = 2c052(8/2 I3 1-cos8 = 231112(8/2),

sin@=2sin(0/2)cos (6/2), cos 8= cos” (8/2 ) - sin? (6,2 }
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46, r=a(l-cos0)
Taking logarithms on both sides, logr = loga +log (1-cosB)

Differentiating w.r.t 9 we get,

1dr _ + sin@
rde 1-cos6
ie., cot ¢ = 251“(9/22)':05(92{2) = cot(0/2)
2sin“ (6/2)
Thus cot¢ = cot(90/2) = ¢ = 6/2
47, Pcos20 = &
Taking logarithms on both sides we have
2logr+log(cos28) = 2logn
Differentiating w.r.t 0 we get,
2 dr + (—2s5in28) =0
r do cos 20 -
_ 1 dr
1., i an290

or cotd = cot(n/2-20) = o =n2-20
48, " = 4" (cos mB +sinm8)
Taking logarithms on both sides we have, m log r = m log a + log (cos m8 +sin m6)

Differentiating w.r.t 8 we get,

m dr 0+(—msinm9+mcosm9)
rodo { cos mB +sinmB)
ie m dr m(cosme—sinme)
Y- r d® (cosmB+sinmb)
8(1- -
Thus cotq’:cosm (1-tanmf) 1 tan mB

cosmB (1+tanmB) " 1+tanmb
or cotd = cot(n/4+m0B) = ¢ =n/4+mO
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49, I'v = 1+ecos B

Taking logarithms on both sides we have,
logl-logr = log (1+ecos)

Differentiating w.r.t 6 we get,

__]_Q-__ —esin B
Tdd  l+ecosH

. esin . A

fe., cotd = ————— (This cannot be simplified )
l+ecos@ :
1+ecos@ 1l+ecos0

or - tan¢=—-—"—" = § = tan —

. £s5in g esing

fiu 1 £l ety :_m oo the v cecler el e fein g L] :fwa fmff ‘h “!"L‘ r)’m

fur ‘H‘JI as H;f{{fh’{n“ "r!ffu f .=um\(:-u~

=i + o 6 e

3] [T ..-‘ { :F‘ 3

SIS SR e b S e I

A= a (e i nol

50. r=a{l+cos@)
= logr = loga+log(1+cos®)
Differentiating w.r.t 8 we get,
Ldr o =sin@ _ —25m(8/2)c05(6/2_2

r dae 1+ cos@ 2 cos? (8/2)

= —tan (6/2)

Thus cot¢ = cot(n/2+8/2) = ¢ = n/2+9/2|
At 6 =n/3, ¢ = n2+%/6 or ¢ = 2n/3 = 120°
Also we have v = B+0 =n/3+2n/3 = = 180°

slope of the tangent= tany = tan 180° = ¢

51. rcos_z(&/2)=
= logr+Zlogcos(B/2)=loga

Differentiating w.r.t 0 we get,

lar , =172 sin(e/2)
r 4o cos{8/2)
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~ |-

% = tan (0/2)
e, cotd = cot(n/2-8/2) = $=n2-0/2
At 8 = 2n/3, ¢ = n/2-n/3 = n/6 = 30°

Also y =08+¢ = 2n/3+7n/6 = 51/6 = 150°

. slope of the tangent = tany = tan150° = ~1/\3

( -+ tan(150°) = tan (90° +60°) = —cot60° = -1/V3)

52 2a/r = 1-cos O
= log2a-logr = log (1~cos0)
Differentiating w.r.t 6 we get,

1 dr sin B 2s5in (8/2 Ycos (8/2)
0——— = =
rd  1-cos® 2sin%(8/2)

= cot (8/2)

- ie., —cotd = cot (6/2) or cot{~¢) = cot6/2 = ¢ =-06/2
At 8 =2n/3, ¢ = -n/3 =-60°

Also y=0+6=2w/3-1/3 =n/3 = 60°
slope of the tangent = tany = tan { 60°) = 3

53. r=a(l+sin®)
= logr = loga+log(1+sin®)

Differentiating w.r.t 0 we get,

1 dr cos 0 cos ©

=0+ —  i¢., td =
r 40 Treng & Ot = ne

At e=n/z,cot¢=—l—%=o.‘. cothp =0 = ¢ = n/2

Also w=0+¢=n2+/2 =1
: slope of the tangent = tany = tann = 0

Note : We can simplify R.H.S and explicitly obtain ¢ as shown below.

cos? ( 8/2)—5in2(6/2)
cos® (8/2) +sin® (6/2) +2sin( 6/2 ) cos (6/2)

cotd =
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cotd = [cos(9/2)~sin(8/2)] [cos (8/2)+sin(08/2)]
[cos(8/2) +sin(0/2) 2
_ [cos(8/72)-sin(8/2)) _cos(B8/2)[1-tan(8/2)]
" {cos(8/2) +sin(6/2)] co5(6/2}[1+tan(8/2)]

e cot _1—tan§6/2!
. *® = I¥an(02)

Thus cot¢ = cot(n/4+0/2) = & = n/4+0/2
If we put 8 = /2 we obtain ¢ =n/d+n/4 = n/2

Show that the following pairs of curves intersect cach other orthogonally

Mooy s b+cos ) il r=b(l-cosy
5. st 1l +sin 0 ditd b= oa{l—smidg
6. ¢ = a" cos o amnd SETRRUTINTY
57. ran 20 = a2 ated P eos 20w b
58. 1 = dsec” (0729 and ro= G eosect (002
59, r = ael i e = b
54, r=a(l+cosB) i r=b(l-cos8)
= logr=loga+log(1+cosH) : logr=logh+log(1-cos0)
Differentiating these w.rt9 we get,
1 dr —sin# 1 dr sin 8
rdd - T1rcose Crde - %t T1-coso
cot§, = —2sin(9/22)cos(9/2)  cot, = 25in(9-/?£)cos(9/2)
2cos” (0/2) 2s5in“(6/2)

ie., cotd, = -tan(06/2) = cot(n/2+0/2) cotd, = cot(6/2)
= 6, = 2+6/2 : ¢, = 62

. angle of intersection= [$,-0,1 = [w2+0/2~872 | = w2

Hence the curves intersect orthogonally.



114 DIFFERENTIAL CALCULUS - 2
55. r=a(l+sinB) : r = a(1-sin6)

= logr = loga+log(1l+sin@) : logr = loga+log(l-sin@)}
Differentiating these w.r.t 0 we get,

}_fi_ cos ~1dr -cosB
rde  1+sin® " rdd 1-sin®
. cos B —-Ccos0
B O = Tiane "% T Tosine

(Refering to the note in Ex-53, it requires quite a number of steps to obtain ¢, and ¢,
explicitly in order to find | ¢, -, |. But it will suffice if we can show that
tang, - tan¢, = -1)

1+sind 1-sin®
Wehave tan¢, = wos B and tan¢, = ~eos 0
2 2
1-5in“0 cos” 0
tan¢, - tan¢, = = -1
! 2 c0s’®  —cos’ 0

Hence the curves intersect orthogonally.

56. ¢'=a"cosnd : 7" = b sin n@
Taking logarithms we have, _

nlogr = nloga+log(cosnd) : nlogr = nlogh+log(sinng)
Differentiating these w.r.t 6 we get,

ndr -nsinnB . ndr ncosnb

r de cos nb T or 4o sin n0
ie., %%:—tanne : %%=cotn9
je., cot ¢, = cot(n/2+nb) : cotd, = cotnb
= ¢, = ©/2+nb : ¢y = nb

]¢1—¢2| = | w2+n6-n0| = n/2 N

Hence the curves intersect orthogonally.
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5.  Fsin20 =4

Taking logarithms we have,
2logr+log(sin26) = 2loga :

Differentiating these w.r.t 0 we get,

2 dr 4 2c0820
rdo  sin20
. 1 dr
ie., y 8= ~cot 20

ie., ‘cot¢1=—cotze

r2c0329= v

2logr+log(cos20) = 2logh

2 dr  2sin20
rd0  cos28
1 4dr

r = tan 20

cotd, = tan 26

ie., cot¢, = cot(-20) cot¢, = cot(n/2-20)
= ¢, =20 $, = n/2-28
| ¢;~9, | = { -286~-n/2+20 | =n72

Hence the curves intersect orthogonally,

58.  r=dsec?(0/2)

Taking logarithms we have,
logr = log 4 +2 log sec (8/2)

Differentiating these w.r.¢ 6 we get,

r= 9cosec2(9/2)

: logr = log 9 +2log cosec (6/2)

,1_ :; e 2y Sec(8/2)tan (6/2) %
1dr _-2cosec(8/2)cot(8/2) 1
r do cosec (0/2) 2
je., %i%*—tan(ﬂ/’l) i:; ~cot (8/2)
ie., cot ¢, = cot(n/2-0/2) cotd, = cot(-6/2)
= ¢, = n/2-8/2 0, = -0/2
|¢1—¢2| = | /2-8/2+6/2 | = n/2

Hence the curves intersect orthogonally

115



116 DIFFERENTIAL CALCULUS - 2

59, r=ac : réd =b
= logr = loga+0Bloge : logr+8loge = logh
But loge = 1. Differentiating these w.r.t 8 we get,

1 dr 1 dr
rd9_0+1 : rde+l_0
ie., cotd, =1 : cot, = -1
= 6 = n/4 : ¢, = -n/4 or In/4

| 6,-¢,| = | /4+n/d]| = n/2

Hence the curves intersect orthogonally.

Foud tive oy de of rders ctioe of Sl e a0 ol
Ao I B

o

60. r=sin0+cosO : r=2sinb
= logr = log (sin®+cos8) : logr = log2+log(sin€)
Differentiating these w.r.f 0, we get,

1dr cos@—sind ldr cosb
r 49  sin6+cos@ " rdd sin®
ie., C0t¢1=0069(1—tan0) : cotd, =coth = ¢, =6

cosB{1l+tan )
cot(n/4+8) = ¢, = /4 + 8

ie., cot ¢,
[ 9,0, | = | n/4+6-0] =n/4

The angle of intersection is /4
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61. r = alog® : r=alogo
= logr = loga+log(logd) logr = loga—1log(log )
Differentiating these w.r.t 9, we get,

ldr 1 _ cdd 1
r d0  log6 - 0 T de  logh - @
: 1 1
ie., cot §, = 8log 0 : cote, = “910ge

Note : we cannot find ¢ and ¢, explicitly.
tan$, = Bloge > tang, = -0logH

1+tar|¢I tan ¢,

Now consider, tan (¢, - ¢,) =

26log8
1~(9log)?

Wehave tofind 6 by solving the given pair of equations -
r=alogd and r = a/loge.

e, tan($;~¢,) = (D)

a

Equating the RH.S we have « logo = log 6

ie., (logB)zzlor log=1= 9 =¢
Substituting 8 = ¢ in (1) we get,

tan (¢, ~9,) = ~1—f—";2- (- loge = 1)

" angle of intersection = 6 -9, = tan™! {;%Z—J =2tan 1,
62.  A4in20 =4 i 7 = 165in20
2logr +log ( sin 209 = log 4 : 2logr = log 16 + log (sin 26 )

Differentiating these w.r.t 8, we get,

g£+2cos28__ g£_2c0529
rde sin20 rdd sin2e
. 1 4dr 1 dr
ie., ;46 = ~-cot20 r s cot 20
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ie., cotd, = cot(—20) : cot ¢, = cot20
= ¢, =—20 : ¢, = 26
|6,-4,| = | -20-20 | = 40
Now consider 7> = —4'2-6 d 7 = 16sin20
4

- 16.5in20 or 4sirf20 = 1
sin 20

ie., 8in220 = 1/4 or sin28 = 172 = 20 = n/6 L 0 =n/12
Substituting 8 = n/12 in{l)weget | ¢, -9, | = /3

. angle of intersection = /3 = 60°

63. =a(l-cos0) : r=2aco80
Taking logarithms we have,
logr = loga+log(1—cosB) : logr = log2a+log(cos®}
Differentiating these w.r.t 0, we get,
1dr _sinf ~ldr -—sin@
rdd  1-cos$ " rde cos@
e, cotd, = 2sm(9/2)cos(e/2) : cot¢2=—tén9
2 sin® (0/2)
ie., cot§, = cot (9/2) . cotd, = cot(n/2+0)
= ¢, = 672 Dy =2+8
| ¢, =%, = | 8/2-1/2-8 | = n/2+6/2

Now consider 7 = a(1—c¢089) and r = 22cos &
a(l-cosB) = 2acos0

or . 3cos® =1lor 6= cos_l(l/S)

Substituting this value in (1) we get, |

the angle of intersection = =/2+1/2 - cos” 1 (1/3)

(1)

(D)
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64. r==6¢cos0 P r=2(1+cos0)
= logr = log6+log(cos8) logr = log2+log(1+cos6)
Differentiating these w.r.t 0, we get,

1dr_-sin®@  1dr -sineg
rd0 cos®  rde 1+cosB
| _ —25in(6/2)cos (8/2)

ie., cot¢, = -tan@ : cot ¢,

. 2 cos? (6/2)
€. coté; =cot(n/2+8) :cotd, = —tan(8/2) = cot (/2 +6/2)
= $, =n/2+0 Dby =/240/2
10,~0, | =622 ()

Equating the R H.S of the given equations we have
6c0s8 =2(1+cosO) or cos8 =1/2 = @ = n/3
» from(1) | ¢,-¢, | = w6 = 30°

Hence the angle of intersection = n/6 = 30°

65. = d'sec(nb+a) " = b sec(n0+B)
Taking logarithms we have,
nIogr:nloga+logsec(n0+a):nlogr=nlogb+logsec(n0+6)

Differentiating these w.r.t 6, we get,

g_:{r_'__nsec(n9+a)tan(n9+a) ] Eﬁ_nsec(nﬁ-&-ﬁ)tan(nﬂ-!—ﬂ)
rdo sec(n@+a) Crde sec(nb+B)

. 1 dr 1 dr '

ie., j'_Eztan(nﬁhcnc) .;deztan(n9+ﬁ)

ie., :cot.f;l =cot[n2~(nB+a)] tcotd, = cot[n/2-(n6+B)]

= ¢, =n2-nb-a t 9y =n2-n6-§ _
| 6,9, ] = | —a+B| = a—P, where a>f

Hence the angle of intersection

it

a-P, where x > 8
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66. r=a(l+cost) i = dcos20
Taking logarithms we have,

logr = loga+log(1l+cos8) . 2logr = 2loga +log(cos28)
Differentiating these w.r.t 8, we get,

1dr _-—siné 2dr _ -2sin20

rd®  1+cosd " r d8  cos2B
ie., cot §, =—25m(9/22)cos(9/2) cot ¢, = —tan 28

2cos*(0/2)

ie,  cot¢ = —tan(8/2) : cotd, = cot(n/2+28)
ie., cot¢l=cot(n/2+0/2} 1 ¢2=n/2+29

> ¢ =w2+6/2
|¢ol-¢2| = [n/2+6/2-:n:/2-28| = 38/2 (D)

Now, squaring the first of the given equations and then equating the R.H.S of the two
equations we have

@ (1+cos8)? = a*cos 20

ie., ) 1+2cos&+c0529=2c0529—1
or cost8—2¢cosH-2 =10
s = uxl;us _ 21;~J§'= Lt

Since ¢0s@ cannot exceed 1 numerically we have to take
c0s0=1-V3 = 0=cos '(1-3)

Otherwise we can also have,
1-2sin?(8/2) = 1-v3 or sin’(8/2) = V372 = V3/4
ie., sin(9/2) = (V3742 = (3/4)*

02 = sin” ' (3/4 )1/4

Substituting this value in (1) we get,
the angle of intersection = 3 sin~ ! (3/4)"*
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67.  r=a8/1+8 : r=g/1462
Taking logarithms we have,

logr = loga+log8-log(1+0) - logr = loga-log (1+86?%)

Differentiating these w.r.# 8, we get,

ldr 1 1 Ldr_ -2
rdo 8 1+0 rds .62
1 -29
ie., mt¢1_9(1+9) cotq>2—1+82
: 2
_ 2 . ~ 1+86
= tan¢, = 0+6 : tan ¢, = 28
Also by equating the R.H.S of the given equations we have,
ab a
149 " 1,92
or  0+8°=14+6 or =12 g=]
tan$, = 2 and tang, = -1 at 9 =1

tan¢1—tan¢2
1+tan ¢, tan 9,
2-(-1) _
1+(-2)

Taking the absolute value, the angle of intersection = tan™

Consider, tan ( b, ~ b,) =

tan(¢l_¢2)= -3

68. r=ab : r=as0
= logr = loga+log logr = loga—log®
Differentiating these w.r.t 8, we get,
ldr 1 ldr 1
rdo e r do 8
te., cotd, = % : cot¢, = -—%
or tang, =8 - tang, = ~9

Also by equating the RH.S of the given equations we have
@8 = a/0 or =1 0=1%1

121
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When 8 =1, tan¢, =1, tan¢, = -1 and
when 0= -1, tan¢, = -1, tan¢2=1.

tan g, - tand)2 =-1= ¢l-¢2 = n/2

The curves intersect at right angles.

>> Wehave 7 = a? cos 20
= 2logr = 2loga+log (co0s20)
Differentiating w.r.f 8, we have,

2dr —-2sin20 or li{-—-tanze
r d0  cos20 rde

e, . cotd =cot(m/2+20) = ¢ = n/2+28

If y isthe angle made by the tangent with the initial line, y~(7%/2) will be the angle
made by the normal with the initial line.

Weknow that y = ¢+8 = (n/2+20)+6 = n/2+30
Hence y = n/2+36 = w—-(n/2) =30
Thus (1/2) +30 and 30 are respectively the angles made by the tangent and the

normal with the initial line.

.J'I.'..'.J :j:l". f -'I'f_'\_"":"f - :I\t ’ . ooy I-‘I::' AN

>> Wehave r = a(1+cosB)

= logr = loga+log (1+cos0)

Differentiating w.r.t 6, we have,

1dr _ -sinb =~251n(9/2)cos(9/2) - _tan(6/2)
rdd 1+cos® 2 cos? (0/2)
i,  cot = cot(m/2+6/2) > ¢ = n/2+6/2 .

If w is the angle made by the tangent with the initial line then,
v =0+0 = 243672
At =n/3:y=n/2+n/2 =n =180
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At 8 = 2n/3 W= T/24 0 = 3p/2 = 270°

Hence we conclude that the tangents to the given curve at 0 = /3 and
0 =2n/3 are respectively parallel and perpendicular to the initial line,

>> Wehavewitﬁﬁsﬁél notations y = 9+ ¢
$=v-0 = tan¢ = tan(y-9)
tany ~tan 6

or tan¢=l+tan\prtan8 ... (1)

Wealso have tany = g';f =y’ and

X=rcosB, y = rsin@ gives tan® = (y/x)
Substituting these in (1) we get,
tan¢ = -IL’__T(.VLQ‘ = -’Ly__'_:_.'{
1+y (y/x) X+yy

Thus tan¢ = i—ﬁ

In the context of derivin'g an expression for the length of the perpendicular (p) from
the pole to the tangent we obtained the expression in the form p = rsing.

The equation of the given curve r = f(6) expressed in terms of P and r is called
as the pedal equation or P —r equation of the curve r = f(9).

Remark : Many equations of the standard cartesian curves Y = f(x) areexpressible in the
parametric form x = fi(t) y= £ (8 Eliminating + we get y = f(x). We have 4
similar concept in respect of r =£(0).

Working procedure for finding the pedal equation of a polar curve

S Given r = f(6) we first obtain ¢.

=  We substitute ¢ (usually a function of 8 ) into the equation p = rsing so that
this equation assumes the form p=rg(o) .

<  We need to eliminate 0 between the equations :
r=f(0) o ()
p=rg(8) - (2)
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This will give us an equationin p and r being the required pedal equation.

D It may be noted that if we are unable to obtain ¢ explicitly in terms of B, we
have to sqaure and take the reciprocal of p = rsin¢.

This will give us :
— = - cosec ¢ or — = —= 1+C0t2¢]
e P’ 2!

Wesubstitutefor cot¢ itself in terms of €. Elimination of € by using the given
equation will give us the pedal equation.

Find the pedal equation of the following curees

72. Zror o= 01 oo i) BRS va b owosy o 2u
A > . - " “
7. ot =ec 20 5 T AN (§
[ : . . = .
76. o= T (oo e sin U roo b4 oos6)
78. RS B LN N 5

s a T sec h b

2
72. —f = 1+cos®

———

= log 2a-logr = log (1+cos50)
Differentiating w.r.t 8, we get,
1dr -—sin®  -2sin(0/2)cos(8/2) _

“r 40 1+cos® 2 cos® (6/2)

—tan(0/2)

ie., cotd = cot(n/2-6/2) = ¢ = n/2-6/2
Consider p = rsin¢ and substituting the value of ¢ we have
p = rsin{n/2-06/2) = rcos{6/2)

— 3

Now we have -2r£= 1+cos@ { L)

p = reos(6/2) R 4]
We have to eliminate 8 from (1) and (2)

(It will be convenient for elimination if we can have similar functions of 0 inthe RH.S of
the two equations )

(1) can be put in the form % = 2c052(0/2) or % = cosz(B/Q)

Also from (2), % = cos (0/2)
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a Ez a pz 2
Henceweget,;=[ J or;=:2- or p° = ar

r

Thus p* = ar is the required pedal equation.

73. r{l-cos@) =
= logr+log(1-cos8) = log2a
Differentiating w.rt 6, we get,

1a $- 08y 14 -sine

F# Tocois = rdd 1-cos®

cot ¢ = 28N (8/2) cos (6/2) = —cot(8/2)
2 sirf (8/2)

ie., cot¢ = cot(-6/2) = b=-(0/2)
Consider p = rsin¢
P =rsin(-6/2) or p = —rsin(8/2)
Now we have, r(l-cos8) =2 (1)
p=-rsin(8/2) @
We have to eliminate 8 from (1) and (2).
(1) canbeputmtheform r -2 sin? (8/2) =
ie., 7 sin? (6/2) = a.
But p/~r = sin(6/2), from (2).
r[é) =4 or p2 = gy

= 2logr = 2loga +log (sec28)
Differenﬁating wr.t 9, we gy
2 dr 2sec20tan26 . 1 dr
T dT seczm o 7 g = tan20
ie., cotd = cot(n/2-20) = ¢ =n/2-28
Consider p = rsing .., p= rsi'n(rr/'Z—ZB) e, p=rcos2®
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Now we have, P = &% sec20
p = rcos2@

From (2), p/r = cos28 or r/p = sec28

Substituting in (1) we get, # = az(r/p) or pr = a

Thus pr= & is the required pedal equation.

75. 7 = d'cosnd
= nlogr = nloga+log (cos nB).

Differentiating w.r.t 9, we get,

r d8  cosnb v

cotd = c‘ot(n/2+n'a) = ¢ =n/2+nd

n dr —nsinnBi 1
r

Consider p =7 sing
p =rsin(n/2+n0) ie, p = 7 cos nb
Now we have, r* = 4" cos n8

p = rcosnb
~. (1) as a consequence of (2} is 7" = " (p/1)

Thus r"*! = pa® is the required pedal equation.

76. M= d"(cosmO+sinnd)
= mlogr=mloga+log(cosm9+smm8)
Differentiating w.r.t 8, we get,

m dr —msinmd+mcosmb

r 49 cosmB +sinmb

1dr cosmB—sinm8 cosmB(1-tanmf)

ie., - — = - =
r d0  cosmO+sinm@ cosm@(1+tanmB)

- cotd = cot (n/4+mB) = $ =mn/4+mb
Consider p = rsiné¢
p = rsin(n/4+m@)

ie., p--r[sin(n/4)cosm9+cos(n/4)sinm9]

DIFFERENTIAL CALCULUS - 2

(1)
R

(1)
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ie., p=T;-(cosm9+sinm9)

(We have used the formula of sin(A+B) andalso the values
sin(1/4) = cos (n/4) = 1/42)

Now we have, r'"=am(cosm8+si.nm9) ... (D)
p=%(cosm9+sinm9) ...{2)

Using (2) in (1) we get,
f"=am-i’r£ or Mo Ty
Thus  r™*1 = 3 4™ p is the required pedal equation.

77 r=2(1+cos8)
= logr=log2+log(1+c059)
Differentiating w.rt 8 we get,

= s O )
cot¢=cot(n/249/2) = ¢ =n24+6/72 )
Consider p = rsin¢
p=rsin(n/2+6/2) = rcos (8/2)
Now v = have, r=2(1+cos8) AN
P =rcos(6/2) .. (2

(1) can be put in the form r = 2 . 2cosz(0/2)

ie,  r=4cos’(0/2)

From (2), p/r = €0s(8/2) and hence (1) becomes,
r=4.(p7P) or P = g

Thus 7 = 4,2 s tltergquired pedal equation.

78. 1/r = l+ecos®
= logf—logr:log(1+ecos8)
Differentiating w.7.t 0, we get,
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_l gﬁ _ —esinf
rd6 1+ecosB
L e sin®
. o -esmb g . citly.
ie cotd = T e e cannot find ¢ explicitly

Consider p = rsin¢
By squaring and taking the reciprocal we have,

1 1 1 1
—=—*cosec2d> or —=—(1+cotz¢
P s )

Substituting for cot¢ itself we have

1 1 ¢? 5in’ §
S =5{l+———3
p2 #? (1+ecos®)

Also we have % =1+ecos®

We need to eliminate & from (1) and (2).

From {2) lr—l =ecos B

Also sin6 = ez(l—coszﬁ) = -2 cos’ O
2

By using (3) we have & sin® @ = e?'-—[%—l]

Now substituting (3) and (4) in (1) we have,

2 R A
- _1,¢é 1.2 1
R AR AP
Th l-"'2_1+3~'t1n ired pedal ti
us pz = F If s & requ pe equa on.

(1)

.. (2)

.. (3)

.. (4)
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79. r" = a” sech n@
= nlogr:nlogaﬂog{sechne)
Differentiating w.r.t 8, we get,

n dr  ~nsechnd tanh no
= - ZHsecn no tarv n

r d9 sech nb
) 1 dr
ie., P —n tanh nB

cot¢ = —tanh n6 and ¢ cannot be found explicitly,

Consider p = rsin¢. Squaring and taking the reciprocal, we get

cosec® ¢ or —15:—1~(l+c0t2¢)
I

2=%(1+tanhznﬁ) _ (1)

5

Also we have, ¥ = 4" sech no

= sech n@ and we have 1~ tank® ne = sech? no

Rt

H

_ 2
tanhznﬁ = 1—-sech2n9 = 1—(—{}
a

Substituting this expression in the RH.S of (1) we get,

2n
= iz !2 . 27 } being the required pedal equation.
o

Hale

) . . . (LI Y]
8O, i the cquiangular spial g et and o are canstaonts slung Hat the tungent
soinclined ab a constint artele weti He radie v by aend e, sAand the pedal cditiation of the
T

>> Wehave r = g g90ta

= logr=loga+9c0tcxloge But loge = 1

logr = loga+cote - 0
Differentiating w.r.t 0, we get,

1 dr
rde-cota-l
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ie., cot¢ = cotee = § = o = constant

. the tangent is inclined at a constant angle with the radius vector.

Consider p = rsin$. But ¢ = &
p = rsino. This is independent of 6.

Hence p = rsina is the required pedal equation.

81. Show that for e curie Feos | \'ri — b H} = Nl

>> Wehave ir'n::o's(\}a2 bi/a)B a® -
For converdence let Va? —bi/a = k, aconstant,

We now have rcosk = ka
= log 7+ log (cos kB) = log (ka).
Differentiating w.r.t 6, we get,

1 dr —ksinﬂ
¥ dB cosk®

=0

te., cotd = ktank®. We cannot find ¢ explicitly.
Consider p = rsing.

Squaring and taking the reciprocal, we have

1 sec2¢ or -1'=

1
= = (1+KFtan> ko
p2 rZ( )

But recosk® = ka

e.,

We need to eliminate 8 from (1) and (2).
From (2), cosk0 = ka = seckB = L
roo. ka

Now tan2k9 = sec2k9—1 = —tz—-—l

i o

Substituting, this expression in (1) we get,

(g

(1)

2
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1 1 P a° - b?
ie., S = {1+ But 2 =
P rzl 2 } 2
1 1 2 nz-bz
IR A R Sl
P r a a
Y 1 _1]a+2- 2442
N A P
, 1 A+
ie., —-i=
p

B2, Tind Hhe vuliee of @ for iy curve a8 - ‘-Jl;z——? —2cos ™! (a.1r)
Note : Observing the complexity of the given equation we do not venture to take logarithms,
>> Wehave a0 = \.‘?—azﬁacos_l(a/r)

Differentiating w.7.t 8 on both sides keeping in mind that r is a function of 6 we
obtain

1 dr 1 a dr

Q= B e e S .4

2N - P d6 '\J']—(az/;i) 2 do
e a= 4  dr - —fi 4 ar
R & B R IV e B

T e AN PO
TN W |

ie 8= e . -d—r *—-—-’2“a2
’ 7

Lo NP gy or 0
e, = -— T —- =

r 3] dr a

VA2 [ VA2
ie., tan¢g = ¢ = tan —

a a

B3, Establish the pedal equation of the e
oz " sin B tbcosnd Hir topen ;;2 { a- " R y - opAnsl

>> Wehave r* = 4" s5innB + 1" cos no
= nlogr = log (4" sin n6 + 5" cos o )
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Differentiating w.r.t 8, we get
n dr na” cosnf—nb" sinnd

rd0 4" sinnd + b cos nd

a" cos n@—b" sinnd

Dividing by n, cotd =
8oy a" sin n0 + b" cos no

Consider p = rsin¢

Since 4 cannot be found, squaring and taking the reciprocal we get,

1oL osed ¢ or l-" (1+cot? 9)
27 K
h]_l__‘l_ (a cos 18 — b sinn® )?
P (a sin 78 + b" cos n8 )*
ie 11 (a" sin 10 +b" cas n6)> + (a" cos n - 8" sin 18 )2
! p2 r2 (4" sinn® +b" cosnB)
i 11 a® ™ (sin® n@ + cos n8)+b2"(cos 78 +sin” no )
! p* r'2 (a" sin 18 + b" cos 10 )
(Product terms cancels out in the numerator)
S W SR 1 i
! p2  (a"sinnd +b" cos n0 2
1 1 @+ i ) ,
or A I by using the given equahon.

P 7 (r")z'

§4. Fimd the Dot cf e porpendiondia I AT O R A REN LT Hie pomt Gl 7l

o the curce v Lo costh
»> Wehave r = a(1~cos50)
= logr = loga+log(1-cos8)
Differentiating w.r.t 9, we get,
’ 1dr __sin® =25in(6/2)cos(8/2)

rd6  1-cos® 2 sin2 (6/2)
ie., cot = cot (8/2) = ¢ = 6/2

= cot(6/2)

Length of the perpendicular p = 7sind
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fe., p=rsin(6/2)

Substituting (r, 0) = (a n2) weget p=asin(n/4)
Thus p—a/\f_

>> Wehave r = asecz(B/Z)
= logr = log a +2 log sec (8/2)
Differentiating w.rt 8, we get,

14dr 2 - sec(8/2)tan(6/2) - 1,2
- = tan (6/2
rdo sec(8/2) tan ( )

cot$ = cot (m/2-6/2) = $=n/2-0/2

Length of the perpendicular p = rsing
le., P=rsin(n/2-6/2) or P =rcos(8/2)
Wehaveat 8 = /3, r = asecz(n/é) = 4a/3

4a _ 4a _\@_Za
p——cos(n/6}~ 33 =5

Hence the length of the perpendlcular p=2an3

Find the angle between the radius vector and the tangent for the following curves.
1 rsec? (6/2) = 24 2. 1 =acosed(6/2)
3. r2=a2(c0529+sin28) 4. 1" cosecnd = "
Find the slopes of the tangents for the following curves at the indica ted points.
5. 7 = a®sin 28 at 0= n/12
6. rcosec28 = g at 8 =mn/4
7. r = asin 30 at  the pole
8. rsec’(6/2) =4 at ¢ =pn
Show that the following pairs of curves intersect each other orfhogonalfy
9 rsec’(0/2) =2  and rcosec® (0/2) = b

10. /cosnd = " and 'sinng = p"



134 DIFFERENTIAL CALCULUS -2

11. 2a/r = 1+cos 9 and 2a/r = 1-cos0

12. 7 = a%cns 20 and * = a%sin20

Find the angle of intersection for the following pairs of curves.
13. r = acosB and r=a/2

14 " = a"(sinn8 +cosnB) and r" = 4" sinnd

15. rzcos(28+0t)=a2 and r2c05(2B+B)=b2

16. 2 = a% cos 20 + b2 and r=b

Obtain the pedal equation of the following curves.

17. r2c0528,_= a* 18. r = 2a/1+cos ©
19. r = asechnb 20. r =a+bcosH
21. 2 = a*sin26 + b cos 20 22. r = asin39

23 Msecnd =a"

24. Show that for the curve 7 sin® (6/2) = a the length of the perpendicular from
the pole to the tangent at the point (22 7/ 2) on the curve is equal to 4 V2.

25. Show that the length of the perpendicular from the pole to the tangent at the point

§ = 1/6 onthe curve r°cos20 = a® is equal to a/N2.
ANSWERS
1. n/2+6/2 2. —-9/2 3. n/4+20
4. nb 5 1 6. -1
7.0 o 8. 1 13. n/3
1. /4 15. a-B 16. tan™ ! (a2/b%)
1 e
17. pr = & 18. p° = ar 19.-p—2= T3
20. p2[2ar+b2—a2]=r4 21. r6=;32(a4+b4)

22. pz(‘}‘az—Srz)---r4 23. pa“=r-"’)rl
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2.3 Derivative of Arc length
r_ﬁl} Introduction

Anarcof a curveisa part of it and we are familiar with the various form of curves :
Cartesian form [y = f(x)], Parametric form [x = x(t), y = y(¢)], Polar form
[r = f(8)] pedalform[f(r, p) = c] Length of an arc of a curve is usually denoted
by ’s” and several results connected with the derivative of arc length ‘s’ can be
established from the basic definition. We assume these well established results as it is
an essential pre-requisite for the study of the following topic called Radius of
Curvature.

'_2?22 Formulae connected with the derivative of arc tength.

I Cartesian curve. vy = £

f 2
(i) gz = 1+ [%J (i) sin y = %g (iii) cosy = ‘;_J: (iv) tany = %

¥ being the angle made by the tangent at P (x, ) on the curve with the X - axis.

2. Parametriccurve: x = x(t),y = y{t)

ARG

3. Polarcurve: r = f(8)

2
. ds 2 (d o a0 _dr
(i} T re+ ( ] (ii} sind =r e (iii) cos¢ = i
¢ being the angle made by the radius vector and the tangent at P (7, 8 ) on the polar
curver = f(08).
2,47 Radius of curvature

24} Introdudction

If we traverse in a ghat section (hilly region) where the road is not straight, we often
see caution boards "sharp bend ahead”, "hairpin bend ahead” ete. which gives an
indication of the difference in the amount of bending of a road at various points which
is nothing but curvature at various points and we discuss the same in a mathematical
way. This aspect is discussed for cartesian, parametric, polar and pedal form of curves.
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'242J Curvature ot Fodiu- o Carvatuss

I
L

Definition -
N
Consider a curve in the XOY plane and let A be a ' . .)P/
fixed point on it. Let P and Q be two ' / \
.// i'\‘l‘
s |

neighbouring points on the curve such that,

N ) ~ ;
AP =5 and AQ=_s+Bs so that PQ = 3s. j s ——
Let v and y+3y respectively be the angles . |.. A \

made by the tangentsat Pand Q withthe X-axis. T Voo

The angle 8y between the tangents is called the bending of the curve which depends
on 8s. §y/8s is called as the mean curvature of the arc PQ. Also the amount of
bending of the curve at P is called as the curvature of the curve at P and is defined
mathematically as

im 3Y - ¥ be denoted by K
ds—0 bs $
(Q—P)
fe., Curvature = K = % . Further if K # 0, the reciprocal of the curvature is called
as the radius of curvature and is denoted by p.
e 1 _ 4
ie., Radius of curoature =p=1 = w

Note :

1. As it is obvious that  depends on s, the relationship between these is called as the
intrinsic equation and (s, y) are called the intrinsic coordinates of the point P

2. We always take the sign of Kand p o be positive.

Remark : Curvature being the amount of bending is obviously zero for a straight line at all
the points on it. It is easy to visualize that the circle has an uniform bending and hence the
curvature of a circle is a constant which will be established mathematically.

A Question Format : Define curvature and prove that the curvature of a circle is a constant.

& .
[Definition given already)

Consider a circle of radius r having centre at the
point C. Let A be a fixed point on the circle and
P(x,y) be any point on the circle such that
[l

AP = 5. Let y bethe angle made by the tangent
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at P with the X-axis at the point B (interior angle being n— ). Clearly

CA = CP =r = radius.
A Fal
We have from the quadrilateral CABP, E‘ +A+B+ 1’5 =27

s A
ie., C+w2+(n-y)+nm2=2n . ACP=vy
We have a known result
- _s  dy 1
S§=ry or Y= PR constant.

Thus the curvature K = 1/r = constant.

This proves that the curvature of a circle at any point on it is a constant and is equal

to the reciprocal of the radius.

We now proceed to derive expressions for the radius of curvature in respect of

cartesian, parametric, polar and pedal form of curves.

:4?’] An expression for the radius of earvilure in the case of a

varitsian curve

Let y =.f(x) be the equation of the cartesian !

curve and A be a fixed pointonit. Let P(x,y) be
~

a point on the curve such that AP = 5. Let y be

the angle made by the tangent at P with the x-axis.

Then we know that tany = %

Differentiating w.r.t s we have,

d _d(dy
as (tanv) = o (dx]

) ) dw_d dz dx
s s"c“’ds"dx(dx ds
But 2% = cosy and by the definition 2¥ = 1
u Js = COSW y efinjtion ds = p
2
2 l d2! 3 dy
sec = COos or sec Yy = —_—
v P dxl pdx2

N

Hence p = sec?"q:/d—xzz
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2 372
(%) |
. (sec‘zv«p)y2 (1+tamzv.|1)3'/2 X
e, p: 5 = =
Py Py #y
dx?

d dx?

Denoting y, = % and y, = % we have,

(1+!I§)3/2
p= "

Note : Sometimes y at some point on the curve becomes infinity (ie., when the tangent is

perpendicular to the x-axis, tany = tan90° = oo} in which case we cannot apply the formula
for p in the above form. In such a case we have to use the formula in the alternative form,

Xy

2
p where x1=g—; and x2=%

[Note : The expression for p inthecaseof y = f(x) has to be established first.)
We have for a cartesian curve y = f(x),
(1+ _l/% )3/2
p =

Y2
Weshall express y; and y, in terms of the parameter ¢.

. {1)

_dy _dy dx _y’ _dy ., _dx
VTG A d Ty Wherey =g, xl =
_ Ay _dfdyy_dy\d _x'y-y'x 1
yz_dIZ-dx de | " dt | x| dx (x) x’
P 7] 4
ie., Y, X A/wherey"=—~z and f’-—‘g—j

Substituting in (1) we get,
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}3/2

ey

p'— x!y.r_ylx”
[(x") 4y ¥
3/2

(2] xryr-ywy

}3/2

. (x;)S

}32’2

. (x;)3

(I’)a(x'y”'-y'l/:)

3/2
2l ey
Thus p= x']/'--y'f'

In an alternative notation with the same meaning the above expression is also put in
the form

{2y
TRy

. (x’)3

}3/2

We prefer to use the cartesian formula iself for finding p in the case of parametric curves also
as the work will be relatively easy.

>> s = alogtan (n/4+y/2 ) and wehavep=gi

Differentiating w.r.t y we have,

1 2 1
2 ““'tan(n/4+w/2) - sec” (n/4+y/2) - )
-8 cos(ma+yr2) 1
2 sin(n/4+y/2) cos® (n/4 +y/2)

a
= ; But i = si
2sin(/4+y/2) (v y72) ut 2sinB cos® = sin 20

s’ a - aq __a-
4y sin[2(n4+y/2)] " sin(n2+y)  cosy - 7SV

Thus p = gsecy
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BT Shoee Hrab o onad as ot i coe e denary oF ninnitor nodirenoth
o= lng SUCT b b IS peed {0 - - I
(1+95)°
>> Wehave p = ————
L]
Consider y = alogsec (x/a)
dy _ a 1
= = ——— . gec(x/a)tan(x/a)- -~
dx =N T sec(x/a) (x/a)tan(x/2) -
. 1
e, .y, = tan(x/a). Alsoy, = sect (x/a)
[1+tan? (x/a) % a  alsecd (x/a) 7
Hence p = =
sec’z(x/a) secz(x/a)
: asecagx/a
ie., = 5 ) = asec(x/a)
sec” (x/a)
Thus p = asec(x/a)
AR o dNgl o e citan T : L L S R B TR
LA ekich s adso eaual to e el e sarans retscerted betieeen the s wore end e
SR PN
372
(1+45)

>> Wehave p =
Y2

y = ccosh ( x/c )by data

Yy = c-sinh(x/c)-% = sinh(x/¢) ; ¥, = %cosh(x/c)

[1+sinh2(x/c)13"2 € c[coshz(x/c)]m

H = =
ence P cosh (x/¢) cosh { x/¢)
3
: ¢ cosh” (x/c) 12
) = = /
ie., cosh (2/¢) ccash” (x/c)

But y/c¢ = cosh(x/c) andhence p=c- (yl/cz) = yl/c
Also we know that the length of the normal (I} is y V1'+ ?1

I = ccosh(x/¢c) V1 + sintf (x/¢) = ¢ cosh?® (x/c) = yz/c

This proves the required result
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89. Find the radius of curvature for the curpe y=af+bxic at x = —21—,- [Va? =1 - ]

>3 y = ax2+bx+c, by data.
: ¥, = 2ax+b, Y, =2a

At the given point, ¥ = h-i[ Va2 =1 ~b1+b = Va2-1 and Yy = 2a itself.
(1+y§)3./2

We have, P
L)
_Nr@-Hp? (22 2
= o = =1
Thus p = &/2
W the madns of vt Bt ey nat T ey ‘._#3 = Savy at the point
BRTE EEE TS
>> Py = 3axy, by data.
Differenﬁating w.r.t. x we have
dy _ dy
3x2+3y2dx =3[ x4y
e S(yz-ax)g-'H:B(a T 2 ﬂ: =4 - x k'S
7 dx y . dx yl yz_.ax
3a%/2 - 942 /4
At (34/2,3a/2), y, = 229 /4
( e 9a%/4 ~ 34%/2
Next dy (yz'”)(“yl"h)‘(“y“’-’z)ﬁwl ~a)
ex —_ = =
ad ~ %2 (y*-ax)?

At (32,30/2) wenotethat, y*~ax = 92/4-32/2 = 32/4 and
ay-2* = 30°MW-9a%/4 = —34%/4.

Her_mce at(3a/2, 3a/2),

=-(3a2/4)(-a-—3a)—(—3a2x4)(—3a—a)

% (34274 )2
y _=3-3 16(-6d) -3
Y PP 9q* 34
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Wehave p = ————
. Y2
(1+1)%2 2¥2-3a _ -32a _ -3
Hence p = = = =
-32/3a -32 16 82

Thus |p| = 382

>> -If the curve meets the x-axis then y = 0.
-i""i;i-“—xl=o - a?(uw-x)=0 . x=24
Thus (22,0) isthepointontl'tecurveatwhichwehavetofind p.
The given equation can be put in the form
32=£_4‘,2
x

8a> -4d°
Differentiating w.r.t. x we have 2yy, = 2z or —

“w= rzy

At (22,0) y, becomes infinity and hence we have to consider dx/dy.

dx -2
Let x1=@=—3—y and x, =0 at (22,0)
dzx -1 2
Now X, = —=—;[2-1+y -2xx,]
2% 02 T u y-=x
at (22,0) : x, = —44%/4° = -1/a
(1+x¥)3/2
Wehave p =
X3
(1+0)*? _
-1/a

>»> Consider Py = a( 2+ y2 ) and differentiate w.r.t. x
a y, +2xy = 2ax + 2ayy,
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e, ¥ (x*~2ay) = 2ax-2xy
2ax - e
or " =T2?;;! ; A.t (-2a,23), Y, is infinity.

Hence X = % = -;: = % and at (—2a, 2g) wehave.ar1 =
Also 4% _ (BX29) (2 - 20) - (- 2ay) (2ax, 25~ 20y
R (2ax-2xy 2

We note that at (~2a,2a)
(2ax-2xy) = 42% and (& - 2y) = 0

(%) (-2) -1
(IZ){-Za,24)= 16a% = o
(lﬂ,%)s/z
We have, p=——x~——
2
EVLCN
ey

Thus |p| = 2a

>>  The equation of the line is ¥ = x and we shall find the point of intersection of
this line with the curve Vx + vy = 4.

This equation when Y = x becomes,
Vi+Vx =4 or 2 =4 or Vr =2 or x = 4
the point of intersection is (4, 4)

Consider Vx +Vy = 4 and differentiate wrt x

—L+—]— =0 or 1L 22
2x 2V N1 T W%
ie., 1) = -VyNx . At (4.4) weget ¥ =-1
Py  V(-172¥ y )~ (~Vy) (172 %)
Now y2= =

d?? x




144

172+172 1
at (4 4), v, =3 T3
(1+ )3/2
Wehave;F’:_"_yi_
Y2
3/2
S e A
Thus p=8V2
S0 S A S LR S
>> y= :_l_xxr by data.
y _(a+x)a—ax—1_ a2
1 (a+x)2 (a+x)2
-2
Also =
Y2 (a+3c)3
(1+y§)3/2
Wehave p = ————
Y2
/2
1+ La (a+x)’
4
(a+x)
Hence =
p 22
_[(a+x)4+ﬂ4]3”’2'(““'C)3
= 35
_2a2{(a+x)4}
_[(4.'1+:rc)4+i!4]:‘v2'(ﬂ“”‘)3
._232 (a+x)6
or -2p = [(f-'"”C)‘t"""‘;]y2
az(;r.'+x)3
4, 4
23 _(a+x) +a
= (-2p)" " =34
a’(a+xy

(2p)2’3=—41;§[(a+x)2+[—-
a

at+Xx

2

2

|

DIFFERENTIAL CALCULUS -2

. We note that (-2)>? = 2¢3
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But a+x = E; by data.

(2p)2/3 _ 1 (azxz + a2y2}

4/3

2 2
e o2 {(z) o) ]
Thus  (2p/a)*® = (x/y) + (y/x)?

WO Lenl e rwdins of curvatice 1 onoeme Fhoy {aect s lant o, 10 2s ggowge f
>» x—alog(sectﬂant)

£= a 'Sec”ant_'_secgt:asect(sect«l-tant)

dt  seci+tant sect +tan ¢

dx

7y = gsect

Also y =asect gives i’l = asecttan ¢

- _c_iz c_igf L Asecttant
Now, y; = dt dt = " gsect - tant
Differentiating w.r.t. x+ we get, v, = sed? %
1 sec i
/] —seczt “asect g
(142>
Wehave p = !
Y2
_ (1+tan2t)3/2a - asec3t
B sec ¢ sect

96. Show that the radzus of curvature at any point 0 on the cycloid x = a(B+ sin6),
y-a( —cosB) is 4acos (82
>> x=a(08+sind) ; Yy=a(l-cos0)

dx _ oy

de-a(1+cose) ; lrm-—asmﬁ

_dy _ _dy dx _ asing 23m(9/2)cos(9/2)
N7 T 4T a(1rces0) T 5o (072)
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y, = tan (8/2)
Differentiating w.r.t. x we get,

1 46
Yy, = sec2(8/2)-—2--*——dx
1 _ sec? (6/2)

1
= sec (9/2)‘2'a(1+cosﬂ) ~ 4ac0s? (6/2)

v, = - sect (8/2)

4
(1+$)7?
Wehave p = ————
Ya
_ [1+n?(872)P% 4
sec* (0/2)
_ [se(0/2) % 40 _ da sec (6/2)
sec® (6/2) sec® (6/2)

Thus p = 4acos(0/2)

>> For the given curve we have
de [ . 1 1
dt—aL_—smt+tan(f"2)-sec2(f/2)-2]
—a——sint+ 1
" 2 cos (t/2) sin(£/2)
. 1 ]
=g| —sint + —
sin t
——sin2f+1] cos?'f
=g —/——— = - —_—
| sint sint
ie., i;-J-c-=m:t:)sztcosect
t
dy _
Also dt—acost
d d dx acost
Now, 4 _ A 2 P8 - tant
¢ S TV a cos? ¢ cosec t

DIFFERENTIAL CALCULUS - 2
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2 4 .
t t t
Hence y, = sec ¢ % = ;ec - &t 3m
acos“t cosect a
(1+2)2
Wehave, p = ————
Y,
_ (1+tan2t)3/2-a _ asec’ t
sect t sint sec4tsint

Thus p = acott

S r., T AT UL DOV TS ! : carty g B

> x =acos’ @ ; y=asi:139
%=-—3acoszﬂsin8 ; %=3asin29c059
P .
N yl=g'g=_z dx _ 3as1nzfcosﬁ = _tan®
dx  d8/ d®  _35c05%05in0
de —sec? 4 0 cosec 8
Hence y2=—5ec20-—= se;: o - sec B¢
X _3g¢0s285in 8 3a
(1+y§)3/2
Wehave, p =
¥z
2 n 3372
=(1+t:n 8) 3a___ liasec39 = 3acos O sin®
sec 0 cosecO sec” B cosec O
Thusat 8 = n/4, p=3a/2
99. Show that the radius of curvatire of the Gove 1+ a{cosb+tsint),
o= g fsint — tcost) s ut’
>> x =a(cost+tsint) ; y=a(sint—tcost)

dx = a{-sint+fcost+sint) ; dy = a(cost+fsint—cost)
dt dt

%x; = gt cos £ and % = gisint

_dy dy /dx _ atsint

Now, y = dx = dt/ 3t = dtcost - @0t
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dt sec2 t sec” t

Hence y, = sec” ¢ dx " atcost = at
(1 +y2 )3/2
Wehave, p= M4
¥
2,372 3
- (1+tan3 t) cat = € t‘“
sec3 t sec ¢
Thus _p =at . i
130 If ¢ befhe rafiusef oot siamy i v the parabols 14 - 4
thui pZ varte an (S wlonet e focus g n el e
>> Consider y2 = 4ax and differentiate w.r.t. x
2yy, = 4a or y, = 20/y
~2a — 4
Further Y=~ Yy =—5
y? ¥y
(14372
We have, p= ~—-——
Y2
2 372 ) 3/2
_{rad AU | PP 4ty
— 41y ~ 4%
_ " ' (P + 422 ) (4 + 4% Y2
-4t () -4
. o - (dax+482 P (42?2 (x+a)?
! - 42 - 47
By squaring we have,
pz _ (llua)3 (.1c+a):'3 _ 6451,'53(:r+a)3 '
164 164*
ie., p2=%(x+a)3 . “o

The co-ordinates of the focus of the parabolais § = {4, 0) and we have
P=(x, Y )

SP= '\((x—a)2+(y—057 by the distance formula.
= \]rZ—Zax+az+y2 = \lxz—Zax+az+4ax
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=_\J;z+2ax+;2 = \((T:a_)z ={(x+a)

Hence 5P = (x+a) and using this resultin (1) we have,

2_4 3
p* =~ (SP)
Thatis, p? = const. { SP)°

; 2 3
Thus p“ e (SP) _
L Priowve that for the oliipse 20 0w " 0 0 1 e wadis o survature s cgnnd o
I s pois fhe lopoth of e ermer gD fre g e Ll e eflipse 1 »y 4
Loveenal b ow ) Meacededn B Voo el b the £ she lartis
rrgdiatn

>> The parametric equations of the ellipse are x = acos®, y = bsin® and we
prefer to apply the parametric formula for finding p. :

. ‘2 372
p = M for a parametric curve.

= -asin® ; 3}=%=bcosﬁ

>

= —~bsind

X =——= =—-acos® ; ¢
de Y 5 e

_ (* 5in® 0+ b cos? 9 )2
ab (sin B + cos* 8)
. _ (7 sin? 8 + b cos? 8 )2
ie., = o2
Further, equation of the tangent to the ellipse at P (acos8,bsin®) is given by
Ecos 0+ %sin 8 = 1. Also the length of the perpendicular from a point (x5, ¥1)

upon a straight line Ax+By+C = 0 is givenby the formula
| Ax, +By, +C |
PT AL B |
Hence the length of the perpendicular from the centre O = (0, 0) of the ellipse
upon the tangent (cos8/2)x+(sin 8/b)y-1 =0 is given by
_ |0+0-1| _ 1
P o 0/ S0/ V(P eo 63 il e Va2
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ie._, p = ab - ps - a3 b3
'\{qz sin® @ + b° cos® & (:r:2 sin® 0+ b* cos? 0 )3",2
(a®sin? 0 + 12 c0s?8)*2 = & bP/p? @
313 2
Using (2) in (1) we get, p = 2 v _ b
ab p3

Thus p= &V /p°
Further, at the end of the major axis we have (x, y) = (ta, 0)
acos® = ta = cos® =211 or cos’6 =1 .. sin’@ =0
Hence p="""g‘é“" or p=a
Yo+t
Thus p = & ¥/a® = Va being the length of the semi latus rectum.
This proves both the desired results,

102. If p, and p, bothe radin et curostires ak the e teimities of the fwo conjugate diametess
of the ellipse, show that

[)2./3

1
>> Let PCP" and QCQ’ be the two
conjugate diameters of the ellipse.

+ pg,--'} = b (ch }z" .

Noting that x =acos® and y = bsin0 -
_represents the parametric equations of the ellipse
and recollecting a property of the canjugate
diameters with reference to the ecentric angle 9,
we can write

P ={(acos® bsin®) and Q = [acos(n/2+8), bsin(n/2+8)]
Let p; be the radius of curvature at Pand p, be the radius of curvature at Q.

Herce o, = (a2 sin29+al;2 c0329)3/2 D
[Refer the previous example] -

Changing © to /2 +8 wehave sin(n/2+0) = cos 8 and

cos{n/2+6) = —sin8: Thus we have from (1)

_ (a2 cos? 8+ b sin?9 )2
Py = ab
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/3 _ ﬂzsm B+b2cos 8 p2/3 B 02C0629+528'm29
(ab)23 © 2 (aby?3

23 . 2/3 az(sin29+c0329)+b2(c0529+si:129)
py"+py7 =
(ab)2/3

Hence ]:ﬁ2

Thus p;;'/:" + p%"q =d+ bz/( a!:)"""r3

CLAST An expression forthe tvoros oo arvalan i the case of 1 oaiar
curve v = f(8) e

Let OP = r be the radius vector and ¢ be the R
angle made by the radius vector with the tangent P
at P(r,0). S
Let y be the angle made by the tangent at P with

the initial line,

Let A be a fixed point on the curve and let

M

AP = s.

Wehave ¥ = 08+

dy @_+d¢ d9+d¢ o . 1 48 1+d_¢o
ds " ds ds  ds a0 ds p

[

Q_Q'
1+d9

We know that tan¢ = %@ = /(%J

d
ie., tand = rL where ro= d_(;
1

&8

.. (1)

or p=

Differentiating w.r.t 6 we get,

d¢ T"n=r-n dr
—rz— wrhereiv2 -

sec
* 2 de?

ié= r%—rrz _ ' r“;l'!vrl"2
O Asec’s A(l+an’e)
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. d¢ r%-—w2 rf-r-r2
’ S AP )] ries?
2 2 2 2
do ry=rr, v +r1+r1 re,
Hence 1+d‘9 1+r2+r%_ 7 1
2 2
) T +2r1-rr2
ie., 142 ———————— ... (2)
d8 r2_+rf ._
ds 2 dr 2 m
Also,weknowthat o - + Bl =V +7] ...03)

Using (2) and (3) in (1) we get

2 2
(ro+ry)
p = \Jr§+r§1 S S 2'
r +2l’1‘-?'f2

(r2+ff)3/2

Thus in the polar form, |p =

2 2
r 4-21"1 rr,

An expression for the radius of curvsture in the case of a pedal
curve

Let: OP = r be the radius vector and ¢ be the
angle made by the radius vector with the tangent
at P.Let y be the angle made by the tangent at
P with the initial line. Draw ON=p, a
perpendicular from the pole to the tangent.

k4

U

P “‘)‘"-. o
Wehave fromthe A ONP, sing¢ = " S

ie., p = rsing N o
Differentiating (1) w.r.t r we get,

Jabdr 4o )| 4 n
dr TardstTas =T dstas |7 s (09

But ¢+0 =
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dp _  dy s dr
ar =T ds T dy  dp
Thus {p = j—;’

INOTE TOF Dropiems
Tofind p for apolar curve r = £(8), we have two options
(i) Applying the polar form of p by finding ryand 1,

(il)  Applying the pedal formof p by first finding the pedal equation of the curve as discussed
already,

In the case of polar curves we prefer to take logarithms first and then differentiate w.r t. 9.

WORKED PROBLEMS

W03, Show that tor the eqquansidar el v = a0 wphere a anmd 0 are constants,
SN R RSt S 0T

>> r = a0t @

= logr = loga+0cota loge. But log,e = 1

Differentiating w.r.t. 6 we have,

1 dr . dr
, da—0+1-cota ie,, deﬁrl-rcota
2}' i
}-Ieru:edT.?_=r2=1r-1 cota = (reota)cota = reot? o
(r2+'%)3./2
We have, p= 5————
+21;-r¢
Aracrr,
oo (Pl (2P (cose?ay?
r2+2r2cot2a-—r2cot2a r2(1+cot26t)

r3 COSGC3 o

= 5 = rcoseco
r'2 Cosec o

.,
Thus p/r = cosec & = constant.

Aliter : By applying the pedal form of p

The pedal equation of the given curveis p = rsina [Refer Example-80)
Differentiating wrt p we get, '
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l—ir*sina L dr = cosec o
T d " dp sina
dr .
Hence p =r dp = r cosecot
Thus p/r = cosec = constant.
04, Shome that Hie redin- b comiime of boowaoe v T sos @ vartes ineersely as yi
>> 7" =a"cosnb
=  nlogr =nloga+log(cosn0)
Differentiating w.r.t. 9 we have, |
n dr ~nsinn 1 dr
_————— = +— _— e = -
r 40 0 cosn D °F T e tann
"= —rtann 6
Hence r, = L, tannB-nrsec’nod
2 deZ 1
(r'2+'%)3/2
We have p = 5———
r2+2r:1£—rr2
p.— (r'2+r2'calnzm%))?”/2
:r2+?.r2tanzﬂE}—r'(—r1 tanne—nrseczne)
_ (A2 (sedng)?
T2+ tan? n@-Atan’ n 6 +nr’ sec’n
_ r sec3n ]
r2(1+tan2nﬁ+nsec2ne)
_ rsec’n 0 _ rsecnf
sen0(1+n) (1+n)
Thus p = ' —secn®

14n

But 4"/Y" = secn bydata.
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L I
p“1+1r1_,r”‘_ 1+n | n~1

ie., f = const -

Thus poc 1/7%71
Aliter : By the pedal form of p
The pedal equation of the given curveis pa® = " *! [Refer Example-75]
P eq g P . P
Differentiating w.r.t. p. we get, '
dr dr a”
a'=(n+1)t = Bl —
( ) dp dp (n+1)r"
dr . 7’ = 7 . 1 = const
4 (n+1)r"_("+1) M1 il

V05, Shoe thad for B crre v an b T

> r(l-c'059)=24
= logr+log(1 - cos@) = log2a
Differentiating w.r.t. 8 we get,

1£:+ sin 0 or dr  —rsing
rdd 1-cos® d8 ~ 1-cos®
- i /- )
ie., dr - 2r51_n(9/22)cos(9 2) - —rcot(8/2)
de 25in° (6/2)

ie., 1, = —recot{8/2)

Hence r, = —r. _Tl cosec” (8/2 )= ry cot( 6/2)

=%cosec2(9/2)+rcotz(9/2)
(r2+r%)3.f2

pP=a—
r2+2r%—rr2

ie., Ty

We have
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(P42 ol (0r2)] "

p =
#+ 27 cotz(efz)-ﬁ cosed (8/2) — 1% cot? (6/2)
2
/2
()% |cosec? (8/2 )}3

rz{l+cot2(8/2)—%cosecz(9/2)lr

__rcosec”’ (8/2)
1/2 - cosec? (8/2)

= 2rcosec (6/2)

p= 2rcosec(8/2) - (1)
But r{1—cos8) = 24, by data.
ie., r - 2sir€ (8/2) = 2a or sin® (8/2) = a/r
cosec ( 8/2) = Vr/a and hence (1) becomes
p=2r Nr/a = 2°°a
Thus p2 =4/a = (4/a) - P = pzura
Aliter : By the pedal form of p

The pedal equation of the given curve is p* = ar [Refer Example-73)
Differentiating w.r.t. p,

dr _dr 2p  2Nar
Zp_adpordp_a T a  \a
tence o L dr 2
ence p = p = N
. 2
e p= rr:'(")a’/z
Thusp2=(4/a)-r?’_:_>_p:__oc‘r_?-_ o i X o
U6, § oo Dire e oo s ot b e e b e e g B e
>> r=asinnb
r = ancosno, Ty = —-anzsinnﬁ

Atthepolewehave 6 = 0. When 6=0: r = 0, ry=an r, =0
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(1‘2 + ’% )3/2
We have p= T“‘*T—-—
r+2 1711
5 - (a2n2)3/2 _ a3n3 _an
24 n? 24% n? 2
Thus p=an/2 atthepole.
107, Show that at the poink wher He CHrne ro= a b tatersecks Mae curoe v = as0 0 Hherr
CUHPTHTINFOS b 1 Tite vdrey 5
>> 'Equating the R.H.S of the two given equations
r=a8 and r = 2/0 we have,
a
a9=aor92=l s =11
Now r =40, gives =48 r,= 0
At 6=4+1, r=g ry =4, r2=0 L)
- : _ 2 _ 3
Also 7 =a/0 gives ry=-a/% r, = 2a/9 .
At B=+1,r=a, r=-q,r,=2 -+ A2)
(r2+r1”.)3/2
We have p=
2 +2rf-rr2

(a2+62)3f2_(202)3/2*2\/2_a

Zrod T 32 T 3 - 6)
(a2+a2)3/2 (2&2)3/2 2\5“!

From(2),p=a2+2a2_2a2= 2 =3 oo (4)

Hence we have from {3) and (4) the ratio of the corresponding curvatures is given by
3/22a 3

V2a " 1

From (1), p=

T Y N S T T AR I T A h it o s ey et

. . ' v . . ' . . N ; ! - LAl (.
L L R S T O RSN el res R et i af e pelar chend of Hy,

>> (@) r=a(l+cos®) = logrzloga+log(l+cose)
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Differentiating w.r.t. 9, we have,
ldr —sin® _ —2sin(9/2)cos(8/2) _
Td8  l+4cosB 2 cos? (8/2) N
= —rtan (0/2)

—tan (9/2)

Hence 7, = —% sec? (8/2) - r, tan (6/2)

ie., r2=-%sec2(9/2)+rtan2(9/2)
. ('2+r§)3/2
W ———
e have P r’2+2r§—rr2
3/2
{2+ tan? (8/2)]
P = 1'2
r2+212tan2(9/2)+§sec2(9/2)—rztanz(G/Z)
372
r3{sec2(9/2)}
r 1+tan2(9/2)+%sec2(6/2)}
3
_ _rsec (9/2) =_2__1r_ 8/2
372 -sec? (0/2) 3 e (92)
p--%sec(B/Z) ' (1)
But r=a(l+cosB)=a  2cos*(6/2)
” _
sec? (6/2) = = or sec(0/2) =%’

Hence (1) becomes p= %5 \%1_ i, p= % ar

= constant.

1

2_4 8
p—9(2ar) or =3

Thus pz/ r is a constant.

{(b) Let POP’ be the polar chord (chord passing through the pole) of the cardioide
r=a(l+cos0). Let p, and p, be the radii of curvatures at the point P and F’

corresponding to the vectorial angles 8 and (n+8) respectively.
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We have already obtained

P, =%sec(8/2)

[first part of this example}

pl = il--’2—s.ec2(9/2)

‘9 - I

But 7 =a(1+cos0) = 2acos?(6/2) |

7 = 44% cos? (8/2)
Hence p? = g - 0% cos* (872 ) sec? (0/2)
, 2 1602 2 '
ie., Py = g ~cos (623 o (2)
Now changing B to (x+0) we have from (2)

2
o = cosz(“BJ—l—G;—cos (n/2+6/2)

, 16a2 .
ie., pg =9 sin? (0/2) .- {3)
Thus we have by adding (2) and (3)

P2+ p2 = 164%/9 = constant.
109, Show Hhurt the i Ot of Hhe curoe ;.u'" + azx’gr

Consider pa® = #* and differentiate w.rt p

2
2 _gpldr 4 _ 4
ﬂ-3r2dpo 7 _3r2
dr
Wehavep—r;!;
b
32 3

159

o
] )

. ¢7/ _
L J
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L0, siwoce b for B ellipse on Be el B -0 o - — o

B PdIMs OF CHEDa i re gt G poenE e vk s T e
+ — A —
2 2
p* ¥ b

Differentiating w.r.t. p we get,

»> Consider i = lz
a

s2 s b A
p3 2 dp T dp p3r
Wehave,p-rj—rp
p_r;azabzzazfz
pr 2
Thus p = & /P

Remark : Referring to Example-101, we have obtained the same result starting from the
equation of the ellipse in the parametric form.

; ' - ; - e e T ey Ay
VUL f e She radins of curoature of the currve B o= - C0S fa’ry utanu

ot

>> Differentiating the given equation w.r.t.r we have,

o _1 > [ -1 -a
dr 4 a2 g2 \[1—(&;"1")2 r?

., 0 NT-d M
1e., dr = ar -

We prefer to find the pedal equation of the given curve and then apply the formula for
p in the pedal form. -

From (1) ldr ___a ie, coth = %

rad 2.2 re-—a
Consider p = rsing
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= 5 = T, cosecTd e, 7 = 2(1+cot2¢)
p r v r
LA s
pz ;2 72 _ 2 |

ie 1.1 r? ie 1 !

¥ N Y p P22

- p="r 7.7 s the pedal equation of the curve.
Differentiating w.r.t. p we get,

1—-—2IP dr ie r—a“—rﬁ-p
NI Zdp p
Thus p =Vr2-g

W2 Preve that poooopo4 L al e wsial wotatuon

>>  Weknow that p = rsin ¢

dp _dpdr ds dr _ 4 _ 8
Now dy " dr ds dy But s cos¢ and iy P rdp

d _dp e 8 dp

Ay~ dr cos ¢ rdp or dy rcos¢ o {2)
Squaring and adding (1} and (2) we get,

2 E}zz 2

+ =
P v

Differentiating w.r.t p, we have,

d (dp dr

+ 2 =2r -
7020 ()

dp | dy dp
dp d(dp) dy _ dr
Pty ayldy ) B T e
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EXFROISES

Find the radius of curvature for the following curves [1 to 9]

1 20 y2/3 =’ at any point {(x,y)

2. xy3 = gt at the point (a4, a)

3. y* = ¥ +8 atthepoint (-2, 0)

4. y = 4sinx-sin2x atthe point (n/2, 4)

5 y = ¢" at the point where the curve cuts the y-axis.

6. y2 = az(a-x)/x where the curve cuts the x-axis.

7. x = alogsecO, y = a(tan6-8)

8. x=a(t-sint), y =a(l-cost)

9. x =acos®, y =bsin® at (a2, b/2)

10. Show that for the curve 7 = 4"sinn®, p varies inversely as 7"~}
11. Show that for the curve r*sec29 = &%, p= a%/3r

12. Show that for the curve rcos2(9/2} = d, pz varies as r°

13, Obtain the pedal equation of the curve r = a4(1-cos€) and hence show that
p = (2/3) 2ar

14, Using the pedal formula for p, prove that p = /a*>  for the curve
= a*sec28

15. Show that for the curve p2 = ar, p* variesas r°

ANSWERS
1 3(axy ) 2. 5V10 a/6 3. 6
4. 5V5/4 5. 2VZ 6. a/2

7. atanBsecH 8. 4asin(#/2) 9. (a®+b2 )y %/ab



